1
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Lamontagne-Kam DM, Davari S, Aristizabal-Henao JJ, Cho S, Chalil D, Mielke JG, Stark KD. Sex differences in hippocampal-dependent memory and the hippocampal lipidome in adolescent rats raised on diets with or without DHA. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102569. [PMID: 36966673 DOI: 10.1016/j.plefa.2023.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Recent studies suggest the effects of DHA supplementation on human memory may differ between females and males during infancy, adolescence, and early adulthood, but the underlying mechanisms are not clear. As a result, this study sought to examine the spatial memory and brain lipidomic profiles in female and male adolescent rats with or without a DHA-enriched diet that began perinatally with the supplementation of dams. Spatial learning and memory were examined in adolescent rats using the Morris Water Maze beginning at 6 weeks of age and animals were sacrificed at 7 weeks of age to permit isolation of brain tissue and blood samples. Behavioral testing showed that there was a significant diet x sex interaction for two key measures of spatial memory (distance to zone and time spent in the correct quadrant during the probe test), with female rats benefiting the most from DHA supplementation. Lipidomic analyses suggest levels of arachidonic acid (ARA) and n-6 docosapentaenoic acid (DPA) containing phospholipid species were lower in the hippocampus of DHA supplemented compared with control animals, and principal component analyses revealed a potential dietary treatment effect for hippocampal PUFA. Females fed DHA had slightly more PE P-18:0_22:6 and maintained levels of PE 18:0_20:4 in the hippocampus in contrast with males fed DHA. Understanding how DHA supplementation during the perinatal and adolescent periods changes cognitive function in a sex-specific manner has important implications for determining the dietary requirements of DHA. This study adds to previous work highlighting the importance of DHA for spatial memory and provides evidence that further research needs to consider how DHA supplementation can cause sex-specific changes.
Collapse
Affiliation(s)
- Daniel M Lamontagne-Kam
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Saeideh Davari
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Juan J Aristizabal-Henao
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; BPGbio Inc., 500 Old Connecticut Path Building B, Framingham, MA, 01701, USA
| | - Seungjae Cho
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dan Chalil
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
Short-Term Fish Oil Supplementation during Adolescence Supports Sex-Specific Impact on Adulthood Visuospatial Memory and Cognitive Flexibility. Nutrients 2022; 14:nu14173513. [PMID: 36079771 PMCID: PMC9459882 DOI: 10.3390/nu14173513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have supported benefits of omega-3 supplementation using Menhaden fish oil (FO) to promote brain maturation and plasticity during critical developmental periods. The goal of this study was to determine sex-specific immediate and delayed impact of adolescent omega-3 supplementation on visuospatial memory and cognitive flexibility. Sixty-four Wistar rats (n = 32 males and females) received daily FO or soybean oil (CSO) supplementation via oral gavage (0.3 mL/100 g body weight) from postnatal day 28–47. The Barnes Maze Test (BMT) was used to measure visuospatial memory and reversal learning trials (RL) determined cognitive flexibility. Juveniles underwent testing immediately after the gavage period, while adults began testing on postnatal day 90. Adult rats showed reduced working memory errors (WME) and gradual decrease in escape latencies compared to juveniles. Importantly, adult FO-supplemented females displayed fewer WME than males, while males’ performance benefited from CSO supplementation. Overall, sex- and supplementation-dependent effects supported a positive impact of FO in female rats only. Our findings support the potential for supplementation limited to the early adolescence period to influence adulthood spatial learning and cognitive flexibility in a sex-specific manner.
Collapse
|
4
|
Tofighi N, Asle-Rousta M, Rahnema M, Amini R. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats. Neurotoxicology 2021; 85:245-253. [PMID: 34111468 DOI: 10.1016/j.neuro.2021.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects many older people around the world. Numerous studies are underway to evaluate the protective effects of natural products in AD. Alpha-linoleic acid (ALA) is an essential unsaturated fatty acid that exhibits neuroprotective outcomes in rat models of ischemic stroke and Parkinson's disease. This research aimed to investigate the effect of ALA on oxidative stress, neuroinflammation, neuronal death, and memory deficit induced by amyloid-beta (Aβ) peptide. After intrahippocampal injection of Aβ1-42, rats received ALA (150 μg/kg, subcutaneously) for 14 consecutive days. ALA decreased the levels of malondialdehyde and nitric oxide, enhanced glutathione content, and increased the activity of catalase in the hippocampus of the rat model of AD. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-d-aspartate receptor subunits NR2A and NR2B mRNAs in the hippocampus, prevented the neuronal loss in the CA1 region, and enhanced the expression of α7 nicotinic acetylcholine receptor. In addition, ALA allowed Aβ1-42-injected rats to spend less time and distance to reach the hidden platform in the Morris water maze test and to swim longer in the target quadrant. We concluded that ALA reduces the biochemical, molecular, histological, and behavioral changes caused by Aβ1-42 and it may be an effective option for treating AD.
Collapse
Affiliation(s)
- Nahaleh Tofighi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
5
|
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020; 18:e3000411. [PMID: 32663221 PMCID: PMC7360025 DOI: 10.1371/journal.pbio.3000411] [Citation(s) in RCA: 1268] [Impact Index Per Article: 253.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Improving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments. Despite widespread endorsement by the scientific community, the impact of ARRIVE on the transparency of reporting in animal research publications has been limited. We have revised the ARRIVE guidelines to update them and facilitate their use in practice. The revised guidelines are published alongside this paper. This explanation and elaboration document was developed as part of the revision. It provides further information about each of the 21 items in ARRIVE 2.0, including the rationale and supporting evidence for their inclusion in the guidelines, elaboration of details to report, and examples of good reporting from the published literature. This document also covers advice and best practice in the design and conduct of animal studies to support researchers in improving standards from the start of the experimental design process through to publication.
Collapse
Affiliation(s)
| | - Amrita Ahluwalia
- The William Harvey Research Institute, London, United Kingdom
- Barts Cardiovascular CTU, Queen Mary University of London, London, United Kingdom
| | - Sabina Alam
- Taylor & Francis Group, London, United Kingdom
| | - Marc T. Avey
- Health Science Practice, ICF, Durham, North Carolina, United States of America
| | - Monya Baker
- Nature, San Francisco, California, United States of America
| | | | | | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ulrich Dirnagl
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health & Department of Experimental Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Emerson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul Garner
- Centre for Evidence Synthesis in Global Health, Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen T. Holgate
- Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - David W. Howells
- Tasmanian School of Medicine, University of Tasmania, Hobart, Australia
| | | | - Natasha A. Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - Malcolm Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ole H. Petersen
- Academia Europaea Knowledge Hub, Cardiff University, Cardiff, United Kingdom
| | | | - Penny Reynolds
- Statistics in Anesthesiology Research (STAR) Core, Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kieron Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Shai D. Silberberg
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | | | - Hanno Würbel
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Abstract
PUFA modulate hypothalamic-pituitary-adrenal (HPA) axis activity and cortisol concentrations and therefore affect physiological stress responses and the regulation of energy balance in the short- and long-term. Especially dietary intake of n-3 PUFA and a lowered n-6:n-3 ratio are highly encouraged due to beneficial and diminishing effects on basal cortisol secretions. However, the time of such effects to occur and how plasma PUFA patterns affect cortisol concentrations in the short-term was rarely investigated. In order to address this, we supplemented forty male and forty female guinea pigs with diets high in the essential PUFA α-linolenic acid (ALA, 18 : 3n-3) and linoleic acid (LA, 18 : 2n-6) for 20 d. Saliva cortisol concentrations in relation to altering plasma PUFA patterns during this time span were analysed in a repeated measurement design both during basal conditions (individual housing) in 5-d intervals and during stressful social confrontations. We detected very fast plasma PUFA accumulation rates, corresponding to the major dietary PUFA, which resulted in plasma PUFA plateau phases after 10 d. ALA negatively and LA positively affected saliva cortisol concentrations throughout the study. A positive effect of the plasma n-6:n-3 ratio on saliva cortisol concentrations was detected during peak plasma PUFA accumulations and social confrontations, while no effects were detected in relation to plasma PUFA plateau phases. These results suggest that the plasma n-6:n-3 ratio diminishes HPA axis activity during altered physiological conditions only and highlights the importance of altering plasma PUFA patterns for HPA axis functions and the control of energy balance and physiological stress.
Collapse
|
7
|
Hu X, Teng S, He J, Sun X, Du M, Kou L, Wang X. Pharmacological basis for application of scutellarin in Alzheimer's disease: Antioxidation and antiapoptosis. Mol Med Rep 2018; 18:4289-4296. [PMID: 30221730 PMCID: PMC6172399 DOI: 10.3892/mmr.2018.9482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Scutellarin (SC), mainly extracted from the Chinese herb Erigeron breviscapus (vant.), has been reported to possess various pharmacological activities; however, its effects on Alzheimer's disease (AD) have not been systemically reported. The protective effects of SC on AD were investigated using an L‑glutamic acid (L‑Glu)‑damaged HT22 cell apoptosis model and an aluminum chloride plus D‑galactose‑induced AD mouse model. In L‑Glu‑damaged HT22 cells, SC significantly increased cell viability, inhibited lactate dehydrogenase release, reduced caspase‑3 activity and suppressed apoptosis, which were determined via an MTT assay, an in vitro Toxicology Assay kit, a Caspase‑3 activity assay kit, and propidium iodide and Annexin V staining. Furthermore, SC suppressed the accumulation of intracellular reactive oxygen species (ROS), restored the dissipation of mitochondrial membrane potential, enhanced the expression of antiapoptotic proteins and reduced the expression of pro‑apoptotic proteins, as determined by immunofluorescence assays and western blotting. In AD mice, SC enhanced vertical and horizontal movements in an autonomic activity test, and reduced the escape latency time in the water maze test. SC reduced the deposition of amyloid β1‑42 (Aβ1‑42) and the expression of phosphorylated‑Tau in the hippocampus as determined by immunohistochemistry analysis, but enhanced the serum levels of Aβ1‑42 of AD mice as determined by ELISA. ELISA analyses also revealed that SC enhanced the levels of acetylcholine, and superoxide dismutase in serum and brain lysate, whereas reduced the levels of ROS in brain lysate of AD mice. The present study confirmed that the protective effects of SC in AD in vitro and in vivo are associated with its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Xinyu Hu
- Faculty of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Jiawei He
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Xiaoqi Sun
- Faculty of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Mingzhao Du
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Ling Kou
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Xiaofeng Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| |
Collapse
|
8
|
Dietary fatty acids sex-specifically modulate guinea pig postnatal development via cortisol concentrations. Sci Rep 2018; 8:471. [PMID: 29323260 PMCID: PMC5765112 DOI: 10.1038/s41598-017-18978-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Early ontogenetic periods and postnatal maturation in organisms are sex-specifically sensitive to hypothalamic-pituitary-adrenal (HPA)-axis activities, related glucocorticoid secretions, and their effects on energy balance and homeostasis. Dietary polyunsaturated (PUFAs) and saturated (SFAs) fatty acids potentially play a major role in this context because PUFAs positively affect HPA-axis functions and a shift towards SFAs may impair body homeostasis. Here we show that dietary PUFAs positively affect postnatal body mass gain and diminish negative glucocorticoid-effects on structural growth rates in male guinea pigs. In contrast, SFAs increased glucocorticoid concentrations, which positively affected testes size and testosterone concentrations in males, but limited their body mass gain and first year survival rate. No distinct diet-related effects were detectable on female growth rates. These results highlight the importance of PUFAs in balancing body homeostasis during male's juvenile development, which clearly derived from a sex-specific energetic advantage of dietary PUFA intakes compared to SFAs.
Collapse
|
9
|
Nemeth M, Wallner B, Siutz C, Pschernig E, Wagner KH, Millesi E. Steroid hormone concentrations and body mass are differently affected by polyunsaturated fatty acids during the oestrous cycle in guinea pigs. Reprod Fertil Dev 2018; 30:1077-1086. [PMID: 29306361 DOI: 10.1071/rd17242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 11/23/2022] Open
Abstract
Reproductive functions in female mammals can be significantly affected by the actions of dietary polyunsaturated fatty acids (PUFAs) on steroid hormone secretion rates. Nevertheless, the effects of plasma free PUFAs on the oestrous cycle have seldom been considered. Therefore, in the present study, the diet of domestic guinea pigs was supplemented with high concentrations of different PUFAs and the effects of altered plasma PUFA patterns on steroid hormone concentrations, measured non-invasively, and body mass during oestrus and dioestrus were analysed. The oestrous cycle was characterised by increased oestrogen and cortisol concentrations in oestrus, corroborated by lowest bodyweight, whereas progesterone concentrations were highest in dioestrus. Plasma concentrations of the long-chain PUFAs docosahexaenoic acid (DHA; 22:6 ω3) and arachidonic acid (AA; 20:5 ω6) affected steroid hormone concentrations differently in oestrus and dioestrus. DHA positively affected oestrogen and progesterone concentrations and diminished cortisol concentrations only in oestrus. In contrast, AA negatively affected oestrogen and stimulated cortisol concentrations in oestrus and reduced progesterone concentrations in general. These findings imply selective and opposite contributions of DHA and AA to ovarian functions during different stages of the oestrous cycle, indicating a high biological relevance of plasma free PUFAs in female reproductive function.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Carina Siutz
- Department of Behavioural Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Elisabeth Pschernig
- Department of Behavioural Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
10
|
de Andrade AM, Fernandes MDC, de Fraga LS, Porawski M, Giovenardi M, Guedes RP. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats. Metab Brain Dis 2017; 32:1871-1881. [PMID: 28756577 DOI: 10.1007/s11011-017-0080-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Neuroinflammation is a consequence of overeating and may predispose to the development of cognitive decline and neurological disorders. This study aimed to evaluate the impact of omega-3 supplementation on memory and neuroinflammatory markers in rats fed a high-fat diet. Male Wistar rats were divided into four groups: standard diet (SD); standard diet + omega-3 (SD + O); high fat diet (HFD); and high fat diet + omega-3 (HFD + O). Diet administration was performed for 20 weeks and omega-3 supplementation started at the 16th week. HFD significantly increased body weight, while omega-3 supplementation did not modify the total weight gain. However, animals from the HFD + O group showed a lower level of visceral fat along with an improvement in insulin sensitivity following HFD. Thus, our results demonstrate a beneficial metabolic role of omega-3 following HFD. On the other hand, HFD animals presented an impairment in object recognition memory, which was not recovered by omega-3. In addition, there was an increase in GFAP-positive cells in the cerebral cortex of the HFD group, showing that omega-3 supplementation can be effective to decrease astrogliosis. However, no differences in GFAP number of cells were found in the hippocampus. We also demonstrated a significant increase in gene expression of pro-inflammatory cytokines IL-6 and TNF-α in cerebral cortex of the HFD group, reinforcing the anti-inflammatory role of this family of fatty acids. In summary, omega-3 supplementation was not sufficient to reverse the memory deficit caused by HFD, although it played an important role in reducing the neuroinflammatory profile. Therefore, omega-3 fatty acids may play an important role in the central nervous system, preventing the progression of neuroinflammation in obesity.
Collapse
Affiliation(s)
- Aline Marcelino de Andrade
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245/308, Porto Alegre, RS, 90050-170, Brazil
| | - Marilda da Cruz Fernandes
- Programa de Pós-Graduação em Medicina: Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marilene Porawski
- Programa de Pós-Graduação em Medicina: Hepatologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245/308, Porto Alegre, RS, 90050-170, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245/308, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245/308, Porto Alegre, RS, 90050-170, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245/308, Porto Alegre, RS, 90050-170, Brazil.
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245/308, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
11
|
Nemeth M, Millesi E, Siutz C, Wagner KH, Quint R, Wallner B. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs. J Anim Sci Biotechnol 2017; 8:28. [PMID: 28373905 PMCID: PMC5376286 DOI: 10.1186/s40104-017-0158-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Background Dietary saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can highly affect reproductive functions by providing additional energy, modulating the biochemical properties of tissues, and hormone secretions. In precocial mammals such as domestic guinea pigs the offspring is born highly developed. Gestation might be the most critical reproductive period in this species and dietary fatty acids may profoundly influence the gestational effort. We therefore determined the hormonal status at conception, the reproductive success, and body mass changes during gestation in guinea pigs maintained on diets high in PUFAs or SFAs, or a control diet. Results The diets significantly affected the females’ plasma fatty acid status at conception, while cortisol and estrogen levels did not differ among groups. SFA females exhibited a significantly lower body mass and litter size, while the individual birth mass of pups did not differ among groups and a general higher pup mortality rate in larger litters was diminished by PUFAs and SFAs. The gestational effort, determined by a mother’s body mass gain during gestation, increased with total litter mass, whereas this increase was lowest in SFA and highest in PUFA individuals. The mother’s body mass after parturition did not differ among groups and was positively affected by the total litter mass in PUFA females. Conclusions While SFAs reduce the litter size, but also the gestational effort as a consequence, PUFA supplementation may contribute to an adjustment of energy accumulations to the total litter mass, which may both favor a mother’s body condition at parturition and perhaps increase the offspring survival at birth. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0158-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carina Siutz
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.,Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
12
|
Nemeth M, Millesi E, Puehringer-Sturmayr V, Kaplan A, Wagner KH, Quint R, Wallner B. Sex-specific effects of dietary fatty acids on saliva cortisol and social behavior in guinea pigs under different social environmental conditions. Biol Sex Differ 2016; 7:51. [PMID: 27688870 PMCID: PMC5034672 DOI: 10.1186/s13293-016-0107-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Unbalanced dietary intakes of saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can profoundly influence the hypothalamic-pituitary-adrenal (HPA)-axis and glucocorticoid secretions in relation to behavioral performances. The beneficial effects of higher dietary PUFA intakes and PUFA:SFA ratios may also affect social interactions and social-living per se, where adequate physiological and behavioral responses are essential to cope with unstable social environmental conditions. METHODS Effects of diets high in PUFAs or SFAs and a control diet were investigated in male and female guinea pigs after 60 days of supplementation. Plasma fatty acid patterns served as an indicator of the general fatty acid status. HPA-axis activities, determined by measuring saliva cortisol concentrations, social behaviors, and hierarchy ranks were analyzed during group housing of established single-sexed groups and during challenging social confrontations with unfamiliar individuals of the other groups. RESULTS The plasma PUFA:SFA ratio was highest in PUFA supplemented animals, with female levels significantly exceeding males, and lowest in SFA animals. SFA males and females showed increased saliva cortisol levels and decreased aggressiveness during group housing, while sociopositive behaviors were lowest in PUFA males. Males generally showed higher cortisol increases in response to the challenging social confrontations with unfamiliar individuals than females. While increasing cortisol concentrations were detected in control and PUFA animals, no such effect was found in SFA animals. During social confrontations, PUFA males showed higher levels of agonistic and sociopositive behaviors and also gained higher dominance ranks among males, which was not detected for females. CONCLUSIONS While SFAs seemingly impaired cortisol responses and social behaviors, PUFAs enabled adequate behavioral responses in male individuals under stressful new social environmental conditions. This sex-specific effect was possibly related to a general sex difference in the n-3 PUFA bioavailability and cortisol responses, which may indicate that males are more susceptible to changing environmental conditions, and shows how dietary fatty acids can shape social systems.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Arthur Kaplan
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
13
|
Nemeth M, Pschernig E, Wallner B, Millesi E. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs. PeerJ 2016; 4:e1590. [PMID: 26839750 PMCID: PMC4734438 DOI: 10.7717/peerj.1590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | | | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Vienna, Austria; Department of Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna , Vienna , Austria
| |
Collapse
|