1
|
Shikina S, Tsai PH, Chiu YL, Chang CF. The stony coral Fimbriaphyllia (Euphyllia) ancora's reproductive strategy involves a sex change every year. Commun Biol 2024; 7:1093. [PMID: 39237739 PMCID: PMC11377712 DOI: 10.1038/s42003-024-06799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
A sex change phenomenon was reported in some free-living, non-sessile coral species of the Family Fungiidae. However, there are no reports describing sex change in sessile colonial species. Timing and cellular processes of sex change are also unclear in corals. Here, we report sex change of the colonial coral, Fimbriaphyllia ancora, and its cellular process. Of 26 colonies monitored at Nanwan Bay, southern Taiwan, about 70% changed their sex every year after annual spawning for least 3-4 consecutive years, i.e., colonies that were male two years ago became female last year, and male again this year. The remaining 30% were permanently male or female. Sex-change and non-sex-change colonies grew in close proximity or even side-by-side. No significant differences were found in colony size between sex-change and non-sex-change colonies. Histological analysis showed that, in female-to-male sex change, small oocytes were present up to 3 months in some gonads after spawning and disappeared by 5 months. This suggests that sex change occurred 4-5 months after spawning. In contrast, in male-to-female sex change, oocytes appeared weeks after sperm release and in most gonads by 3 months, suggesting that male-to-female sex change occurred 0-3 months after sperm release.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Pin-Hsuan Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
2
|
Marchini C, Gizzi F, Pondrelli T, Moreddu L, Marisaldi L, Montori F, Lazzari V, Airi V, Caroselli E, Prada F, Falini G, Dubinsky Z, Goffredo S. Decreasing pH impairs sexual reproduction in a Mediterranean coral transplanted at a CO 2 vent. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:3990-4000. [PMID: 35873528 PMCID: PMC9293323 DOI: 10.1002/lno.11937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 06/15/2023]
Abstract
Ocean acidification, due to the increase of carbon dioxide (CO2) concentration in the atmosphere and its absorption by the oceans, affects many aspects of marine calcifying organisms' biology, including reproduction. Most of the available studies on low pH effects on coral reproduction have been conducted on tropical species under controlled conditions, while little information is reported for either tropical or temperate species in the field. This study describes the influence of decreasing pH on sexual reproduction of the temperate non-zooxanthellate colonial scleractinian Astroides calycularis, transplanted in four sites along a natural pH gradient at the underwater volcanic crater of Panarea Island (Tyrrhenian Sea, Italy). The average pH values of each site (range: pHTS 8.07-7.40) match different scenarios of the Intergovernmental Panel on Climate Change (IPCC) for the end of the century. After 3 months under experimental conditions, the reproductive parameters of both oocytes and spermaries (abundance, gonadal index, and diameters) seem to be unaffected by low pH. However, a delay in spermary development in the pre-fertilization period and a persistence of mature oocytes in the fertilization period were observed in the most acidic site. Furthermore, no embryos were found in colonies from the two most acidic sites, suggesting a delay or an interruption of the fertilization process due to acidified conditions. These findings suggest a negative effect of low pH on A. calycularis sexual reproduction. However, long-term experiments, including the synergistic impact of pH and temperature, are needed to predict if this species will be able to adapt to climate change over the next century.
Collapse
Affiliation(s)
- Chiara Marchini
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Francesca Gizzi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- MARE ‐ Marine and Environmental Sciences CentreAgência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (ARDITI)FunchalMadeiraPortugal
| | - Thomas Pondrelli
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Lisa Moreddu
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Luca Marisaldi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Francesco Montori
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Lazzari
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Giuseppe Falini
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| |
Collapse
|