1
|
David BT, Curtin JJ, Brown JL, Coutts DJC, Boles NC, Hill CE. Treatment with hypoxia-mimetics protects cultured rat Schwann cells against oxidative stress-induced cell death. Glia 2021; 69:2215-2234. [PMID: 34019306 PMCID: PMC11848739 DOI: 10.1002/glia.24019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) grafts promote axon regeneration in the injured spinal cord, but transplant efficacy is diminished by a high death rate in the first 2-3 days postimplantation. Both hypoxic preconditioning and pharmacological induction of the cellular hypoxic response can drive cellular adaptations and improve transplant survival in a number of disease/injury models. Hypoxia-inducible factor 1 alpha (HIF-1α), a regulator of the cellular response to hypoxia, is implicated in preconditioning-associated protection. HIF-1α cellular levels are regulated by the HIF-prolyl hydroxylases (HIF-PHDs). Pharmacological inhibition of the HIF-PHDs mimics hypoxic preconditioning and provides a method to induce adaptive hypoxic responses without direct exposure to hypoxia. In this study, we show that hypoxia-mimetics, deferoxamine (DFO) and adaptaquin (AQ), enhance HIF-1α stability and HIF-1α target gene expression. Expression profiling of hypoxia-related genes demonstrates that HIF-dependent and HIF-independent expression changes occur. Analyses of transcription factor binding sites identify several candidate transcriptional co-regulators that vary in SCs along with HIF-1α. Using an in vitro model system, we show that hypoxia-mimetics are potent blockers of oxidative stress-induced death in SCs. In contrast, traditional hypoxic preconditioning was not protective. The robust protection induced by pharmacological preconditioning, particularly with DFO, indicates that pharmacological induction of hypoxic adaptations could be useful for promoting transplanted SC survival. These agents may also be more broadly useful for protecting SCs, as oxidative stress is a major pathway that drives cellular damage in the context of neurological injury and disease, including demyelinating diseases and peripheral neuropathies.
Collapse
Affiliation(s)
- Brian T. David
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Jessica J. Curtin
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Jennifer L. Brown
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - David J. C. Coutts
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | | | - Caitlin E. Hill
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
- Neural Stem Cell Institute, Rensselaer, New York
| |
Collapse
|
2
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
3
|
Zhou XB, Zou DX, Gu W, Wang D, Feng JS, Wang JY, Zhou JL. An Experimental Study on Repeated Brief Ischemia in Promoting Sciatic Nerve Repair and Regeneration in Rats. World Neurosurg 2018; 114:e11-e21. [PMID: 29374605 DOI: 10.1016/j.wneu.2018.01.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Research has shown that ischemic preconditioning reduced the severity of ischemia-reperfusion injury in brain in rats, we have a hypothesis that repeated brief ischemia has positive effects on peripheral nerve damage. This study was conducted to investigate the potential protective effects of repeated brief ischemia on peripheral nerve regeneration using a rat model of experimental sciatic nerve transection injury. METHODS Treatment groups (groups A-D) received repeated, brief ischemia every 1 day/2 days/3 days/7 days. After surgery for 4, 8, 12 weeks, we evaluated sciatic functional index test, gastrocnemius muscle wet mass, axon and nerve fiber diameter, density, G-ratio, immunohistochemistry of S-100, vascular endothelial growth factor (VEGF), and the ultrastructure of the nerves. RESULTS Sciatic functional index test and muscle wet mass were improved on the repeated brief ischemia groups. Ischemia treatment resulted in a significant increase in axon and nerve fiber density as well as S-100 and VEGF-positive cell, which indicated that repeated brief ischemia promotes Schwann cell proliferation and reconstruction. CONCLUSIONS This study exhibits the positive effects of repeated brief ischemia in sciatic nerve transection injury, possibly in part because it can improve VEGF and the physiologic state of Schwann cells in the ischemic environment and then accelerate the ability of neurite outgrow.
Collapse
Affiliation(s)
- Xiao-Bin Zhou
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China; Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - De-Xin Zou
- Department of Spine Surgery, YanTai-Shan Hospital, Shandong, People's Republic of China
| | - Wei Gu
- Department of Ophthalmology, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian-Shu Feng
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Jiang-Yong Wang
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Lin KF, He S, Song Y, Wang CM, Gao Y, Li JQ, Tang P, Wang Z, Bi L, Pei GX. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6905-16. [PMID: 26930140 DOI: 10.1021/acsami.6b00815] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties.
Collapse
Affiliation(s)
- Kai-Feng Lin
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Shu He
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Yue Song
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Chun-Mei Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Yi Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Jun-Qin Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Peng Tang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Zheng Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Long Bi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| | - Guo-Xian Pei
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, 710032, P. R. China
| |
Collapse
|