1
|
Zhu Y, Yang J, Wang K, Li X, Ling J, Wu X, Fu L, Qi Q. Effects of Cerebellar Transcranial Magnetic Stimulation on the Motor Function of Patients With Stroke: A Systematic Review and Meta-Analysis. Brain Behav 2025; 15:e70471. [PMID: 40249071 PMCID: PMC12006925 DOI: 10.1002/brb3.70471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND As the core of motor control and learning, the cerebellum is crucial for maintaining posture, regulating muscle tone, and coordinating movement. In recent years, there has been an increase in the number of studies on the application of cerebellar transcranial magnetic stimulation (cTMS) to motor dysfunction in patients with stroke. This review aims to analyze cTMS efficacy for stroke patients and further explore the specific effects of different stages of the disease, stimulation modes, stimulation intensity, and treatment duration. METHODS Six databases were searched comprehensively-CNKI, Wanfang, Web of Science, PubMed, The Cochrane Library, and Embase-to collect randomized controlled trials (RCTs) up to October 2024 that investigated the improvement of physical motor dysfunction in stroke patients using cTMS. Two researchers screened the literature, extracted data, and independently assessed the quality and risk of bias of the included studies using the PEDro scale and the Cochrane Risk of Bias Assessment Tool 2. Meta-analysis was performed using RevMan 5.4. RESULTS A total of 20 RCTs with 812 participants were included. Meta-analysis and sensitivity analysis revealed that cTMS significantly improved BBS (Random, MD = 5.19, 95%CI = 3.66-6.72, p < 0.00001), enhanced FMA-LE scores (Random, MD = 1.88, 95%CI = 0.76-3.01, p = 0.001), shortened the TUG (Fix, MD = -1.64, 95%CI = -2.60 to -0.68, p = 0.0008), and 10MWT durations (Fix, MD = -7.66, 95%CI = -12.33 to -2.99, p = 0.001), and increased MEP amplitudes (Fix, MD = 0.45, 95%CI = 0.04-0.87, p = 0.03). Subgroup analysis of the BBS showed that cTMS had a significant effect on patients with stroke in the subacute phase (p < 0.00001), with improvements observed using HF-rTMS (p < 0.0001), iTBS (p < 0.00001), and intensities ≤ 80%RMT (< 80% RMT, p < 0.0001; 80% RMT, p < 0.00001). cTMS consistently demonstrated superior effects compared to controls across different intervention durations (5-10 sessions, p = 0.009; 11-20 sessions, p < 0.00001; > 20 sessions, p < 0.00001). CONCLUSION cTMS effectively improves motor function in patients with stroke, particularly during the subacute phase with excitatory stimulation and moderate intensities (≤ 80%RMT). TRIAL REGISTRATION PROSPERO number: CRD42024540604.
Collapse
Affiliation(s)
- Yongxin Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Shanghai University of SportShanghaiChina
| | - Juncong Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Shanghai University of SportShanghaiChina
| | - Kun Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Kunshan Rehabilitation HospitalKunshanJiangsuChina
| | - Xianwen Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Jiahui Ling
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Shanghai University of SportShanghaiChina
| | - Xie Wu
- Shanghai University of SportShanghaiChina
| | - Lianhui Fu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Qi Qi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
2
|
Wang Z, Wang L, Gao F, Dai Y, Liu C, Wu J, Wang M, Yan Q, Chen Y, Wang C, Wang L. Exploring cerebellar transcranial magnetic stimulation in post-stroke limb dysfunction rehabilitation: a narrative review. Front Neurosci 2025; 19:1405637. [PMID: 39963260 PMCID: PMC11830664 DOI: 10.3389/fnins.2025.1405637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
This review delves into the emerging field of cerebellar Transcranial Magnetic Stimulation (TMS) in the rehabilitation of limb dysfunction following a stroke. It synthesizes findings from randomized controlled trials and case studies, examining the efficacy, safety, and underlying mechanisms of cerebellar TMS. The review outlines advancements in TMS technologies, such as low-frequency repetitive TMS, intermittent Theta Burst Stimulation, and Cerebello-Motor Paired Associative Stimulation, and their integration with physiotherapy. The role of the cerebellum in motor control, the theoretical underpinnings of cerebellar stimulation on motor cortex excitability, and the indirect effects on cognition and motor learning are explored. Additionally, the review discusses current challenges, including coil types, safety, and optimal timing and modes of stimulation, and suggests future research directions. This comprehensive analysis highlights cerebellar TMS as a promising, though complex, approach in stroke rehabilitation, offering insights for its clinical optimization.
Collapse
Affiliation(s)
- Zhan Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Likai Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Gao
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yongli Dai
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chunqiao Liu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Jingyi Wu
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chengbin Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Carrette S, Vonck K, Klooster D, Raedt R, Carrette E, Delbeke J, Wadman W, Casarotto S, Massimini M, Boon P. Exploration of Theta Burst-Induced Modulation of Transcranial Magnetic Stimulation-Evoked Potentials Over the Motor Cortex. Neuromodulation 2025; 28:123-135. [PMID: 38842956 DOI: 10.1016/j.neurom.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES This study investigates the way theta burst stimulation (TBS) applied to the motor cortex (M1) affects TMS-evoked potentials (TEPs). There have been few direct comparisons of continuous TBS (cTBS) and intermittent TBS (iTBS), and there is a lack of consensus from existing literature on the induced effects. We performed an exploratory trial to assess the effect of M1-cTBS and M1-iTBS on TEP components. MATERIALS AND METHODS In a cross-over design, 15 participants each completed three experimental sessions with ≥one week in between sessions. The effect of a single TBS train administered over M1 was investigated using TEPs recorded at the same location, 20 to 30 minutes before and in the first 10 minutes after the intervention. In each session, a different type of TBS (cTBS, iTBS, or active control cTBS) was administered in a single-blinded randomized order. For six different TEP components (N15, P30, N45, P60, N100, and P180), amplitude was compared before and after the intervention using cluster-based permutation (CBP) analysis. RESULTS We were unable to identify a significant modulation of any of the six predefined M1 TEP components after a single train of TBS. When waiving statistical correction for multiple testing in view of the exploratory nature of the study, the CBP analysis supports a reduction of the P180 amplitude after iTBS (p = 0.015), whereas no effect was observed after cTBS or in the active control condition. The reduction occurred in ten of 15 subjects, showing intersubject variability. CONCLUSIONS The observed decrease in the P180 amplitude after iTBS may suggest a neuromodulatory effect of iTBS. Despite methodologic issues related to our study and the potential sensory contamination within this latency range of the TEP, we believe that our finding deserves further investigation in hypothesis-driven trials of adequate power and proper design, focusing on disentanglement between TEPs and peripherally evoked potentials, in addition to indicating reproducibility across sessions and subjects. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT05206162.
Collapse
Affiliation(s)
- Sofie Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | - Kristl Vonck
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean Delbeke
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Wytse Wadman
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Organizzazione Non Lucrativa di Utilità Sociale (ONLUS), Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Organizzazione Non Lucrativa di Utilità Sociale (ONLUS), Milan, Italy
| | - Paul Boon
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
5
|
Speranza BE, Hill AT, Do M, Cerins A, Donaldson PH, Desarker P, Oberman LM, Das S, Enticott PG, Kirkovski M. The Neurophysiological Effects of Theta Burst Stimulation as Measured by Electroencephalography: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1083-1120. [PMID: 39084526 DOI: 10.1016/j.bpsc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can modulate neural activity. The effect of TBS on regions beyond the motor cortex remains unclear. With increased interest in applying TBS to nonmotor regions for research and clinical purposes, these effects must be understood and characterized. We synthesized the electrophysiological effects of a single session of TBS, as indexed by electroencephalography (EEG) and concurrent transcranial magnetic stimulation and EEG, in nonclinical participants. We reviewed 79 studies that administered either continuous TBS or intermittent TBS protocols. Broadly, continuous TBS suppressed and intermittent TBS facilitated evoked response component amplitudes. Response to TBS as measured by spectral power and connectivity was much more variable. Variability increased in the presence of task stimuli. There was a large degree of heterogeneity in the research methodology across studies. Additionally, the effect of individual differences on TBS response has been insufficiently investigated. Future research investigating the effects of TBS as measured by EEG must consider methodological and individual factors that may affect TBS outcomes.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Pushpal Desarker
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
He R, Shi X, Jiang L, Zhu Y, Pei Z, Zhu L, Su X, Yao D, Xu P, Guo Y, Li F. Prediction of rTMS Efficacy in Patients With Essential Tremor: Biomarkers From Individual Resting-State EEG Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3719-3728. [PMID: 39331541 DOI: 10.1109/tnsre.2024.3469576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The pathogenesis of essential tremor (ET) remains unclear, and the efficacy of related drug treatment is inadequate for proper tremor control. Hence, in the current study, consecutive low-frequency repetitive transcranial magnetic stimulation (rTMS) modulation on cerebellum was accomplished in a population of ET patients, along with pre- and post-treatment resting-state electroencephalogram (EEG) networks being constructed. The results primarily clarified the decreasing of resting-state network interactions occurring in ET, especially the weaker frontal-parietal connectivity, compared to healthy individuals. While after the rTMS stimulation, promotions in both network connectivity and properties, as well as clinical scales, were identified. Furthermore, significant correlations between network characteristics and clinical scale scores enabled the development of predictive models for assessing rTMS intervention efficacy. Using a multivariable linear model, clinical scales after one-month rTMS treatment were accurately predicted, underscoring the potential of brain networks in evaluating rTMS effectiveness for ET. The findings consistently demonstrated that repetitive low-frequency rTMS neuromodulation on cerebellum can significantly improve the manifestations of ET, and individual networks will be reliable tools for evaluating the rTMS efficacy, thereby guiding personalized treatment strategies for ET patients.
Collapse
|
7
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Di Cecco G, Pavone C, Bonacini L, D'Aniello S, Pezzella FR, Romano A, Pavesi G, Valzania F, Pascarella R. Cerebellar mutism syndrome caused by bilateral cerebellar hemorrhage in adults: a case report and review of the literature. Neurol Sci 2024; 45:4161-4171. [PMID: 38724752 DOI: 10.1007/s10072-024-07571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 08/09/2024]
Abstract
Cerebellar mutism syndrome (CMS) is a frequent complication of surgical intervention on posterior fossa in children. It has been only occasionally reported in adults and its features have not been fully characterized. In children and in young adults, medulloblastoma is the main reason for neurosurgery. A single case of postsurgical CMS is presented in an adult patient with a cerebellar hemorrhage and a systematic review of the published individual cases of CMS in adults was done. Literature review of individual cases found 30 patients, 18/30 (60%) males, from 20 to 71 years at diagnosis. All but one case was post-surgical, but in one of the post-surgical cases iatrogenic basilar artery occlusion was proposed as cause for CMS. The causes were: primary tumors of the posterior fossa in 16/22 (72.7%) metastasis in 3/30 (10%), ischemia in 3/30 (10%) cerebellar hemorrhage in 3/30 (10%), and benign lesions in 2/30 (6.7%) patients. 8/30 patients (26.7%) were reported as having persistent or incomplete resolution of CMS within 12 months. CMS is a rare occurrence in adults and spontaneous cerebellar hemorrhage has been reported in 3/30 (10%) adult patients. The generally accepted hypothesis is that CMS results from bilateral damage to the dentate nucleus or the dentate-rubro-thalamic tract, leading to cerebro-cerebellar diaschisis. Several causes might contribute in adults. The prognosis of CMS is slightly worse in adults than in children, but two thirds of cases show a complete resolution within 6 months.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Claudio Pavone
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Lara Bonacini
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Serena D'Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | | | - Antonio Romano
- Neurosurgery Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Neurosurgery Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
8
|
Xu R, Zhang H, Liu S, Meng L, Ming D. cTBS over primary motor cortex increased contralateral corticomuscular coupling and interhemispheric functional connection. J Neural Eng 2024; 21:016012. [PMID: 38211343 DOI: 10.1088/1741-2552/ad1dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective.Transcranial magnetic stimulation is a non-invasive brain stimulation technique that changes the activity of the cerebral cortex. Contralesional continuous theta burst stimulation (cTBS) has been proposed and verified beneficial to stroke motor recovery. However, the underlying mechanism is still unclear.Approach.20 healthy right-handed subjects were recruited in this study, receiving real-cTBS over their left primary motor cortex or sham-cTBS. We designed the finger tapping task (FTT) before and after stimulation and recorded the accuracy and reaction time (RT) of the task. The electroencephalogram and surface electromyogram signals were recorded during the left finger pinching task (FPT) before and after stimulation. We calculated cortico-muscular coherence (CMC) in the contralateral hemisphere and cortico-cortical coherence (CCC) in the bilateral hemisphere. The two-way repeated measures analysis of variance was used to analyze the effect of cTBS.Main results.In the FTT, there was a significant main effect of 'time' on RT (F(1, 38) = 24.739,p< 0.001). In the FPT, the results showed that there was a significant interaction effect on the CMC peak and area in the beta band (peak:F(1, 38) = 8.562,p= 0.006; area:F(1, 38) = 5.273,p= 0.027), on the CCC peak in the alpha band (F(1, 38) = 4.815,p= 0.034) and area in the beta band (F(1, 38) = 4.822,p= 0.034). The post hoc tests showed that the CMC peak (W= 20,p= 0.002), the CMC area (W= 13,p= 0.003) and the CCC peak (t= -2.696,p= 0.014) increased significantly after real-cTBS. However, there was no significant decrease or increase after sham-cTBS.Significance.Our study found that cTBS can improve CMC of contralateral hemisphere and CCC of bilateral hemisphere, indicating that cTBS can strengthen cortico-muscular and cortico-cortical coupling.
Collapse
Affiliation(s)
- Rui Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haichao Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shizhong Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Heath A, Madore M, Diaz K, McNerney MW. Hindbrain Stimulation Modulates Object Recognition Discrimination Efficiency and Hippocampal Synaptic Connections. Brain Sci 2023; 13:1425. [PMID: 37891795 PMCID: PMC10605381 DOI: 10.3390/brainsci13101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: The cerebellum is well known to have functionalities beyond the control of motor function. However, brain stimulation studies have not explored the potential of this region to impact downstream processes which are imperative to multiple neurological conditions. Our study aimed to look at preliminary evidence that hindbrain-targeted repetitive transcranial magnetic stimulation (rTMS) in mice could alter motor, cognitive and anxiety measures; (2) Methods: Male B6129SF2/J mice (n = 16) were given rTMS (n = 9) over lambda at 10 Hz for 10 min or Sham (n = 7) for 14 consecutive days. Mice then underwent a battery of behavioral measures. (3) Results: In the object recognition test, only rTMS-treated mice distinguished between the novel object at 5 min, whereas those that received Sham treatment continued to improve discrimination from 5 to 10 min. Additionally, over the 10 min test phase, rTMS-stimulated mice explored the objects less than the Sham mice. This was accompanied by increased colocalization of presynaptic and postsynaptic markers in the hippocampus in the rTMS mice (4) Conclusions: Hindbrain rTMS stimulation elicits improved processing speed in the object recognition test via structural plasticity mechanisms in the hippocampus and could provide additional ways of targeting these important substructures of the brain.
Collapse
Affiliation(s)
- Alesha Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA 94304, USA
| | - Michelle Madore
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA 94304, USA
| | - Karina Diaz
- Department of Pharmacology and Physiology, Graduate School of Arts and Sciences, Georgetown University, District of Columbia, Washington, DC 20057, USA
| | - M. Windy McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA 94304, USA
| |
Collapse
|
10
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
11
|
Gatti D, Rinaldi L, Vecchi T, Ferrari C. Understanding cerebellar cognitive and social functions: methodological challenges and new directions for future transcranial magnetic stimulation studies. Curr Opin Behav Sci 2023; 53:101300. [DOI: 10.1016/j.cobeha.2023.101300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Dale M, Mancini M, Stevens A, Brumbach B, Prewitt A, Harker G, Silva-Batista C, Ragothaman A, Folmer R, Quinn J, Horak F. C-STIM: Protocol for a randomized, single-blind, crossover study of cerebellar repetitive transcranial magnetic stimulation (rTMS) for postural instability in people with progressive supranuclear palsy (PSP). Contemp Clin Trials Commun 2023; 35:101165. [PMID: 37538197 PMCID: PMC10393598 DOI: 10.1016/j.conctc.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 06/18/2023] [Indexed: 08/05/2023] Open
Abstract
Background Methods for modulating the cerebellum with transcranial magnetic stimulation (TMS) are well established, and preliminary data from our group and others has shown evidence of transient improvements in balance after cerebellar repetitive transcranial magnetic stimulation (rTMS) in progressive suprancuclear palsy (PSP). This study examines extensive posturography measures before and after 10 sessions of cerebellar rTMS and sham TMS in PSP. Methods Thirty subjects with PSP and postural instability will undergo cerebellar active and sham rTMS in a single-blind, crossover design with a randomized order of a 10-day intervention. Primary outcomes will be changes in sway area and medio-lateral range of sway with eyes open while standing on a stationary force-plate, and safety, tolerability, and blindedness. Secondary outcomes will include posturography and gait analysis with body-worn, triaxial inertial sensors, clinical balance scales and questionnaires, and a bedside test of vestibular function. Exploratory outcomes are changes in functional near infrared spectroscopy (fNIRS) signal over the prefrontal, supplementary motor, and primary motor cortices while standing and walking, and speech samples for future analysis. Discussion The C-STIM crossover intervention study adds a longer duration of stimulation and extensive posturography measures to more finely measure the improvements in balance and exploratory functional near-infrared spectroscopy (fNIRS) over the prefronal, supplementary motor, and primary motor cortices during balance assessments before and after 10 sessions of cerebellar rTMS and 10 sessions of sham cerebellar TMS. This project will improve our understanding of the importance of the cerebellum for control of postural stability in PSP.
Collapse
Affiliation(s)
- M.L. Dale
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - M. Mancini
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - A. Stevens
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - B.H. Brumbach
- OHSU-PSU School of Public Health, Biostatistics and Design Program, Oregon Health & Science University, Portland, OR, USA
| | - A. Prewitt
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - G. Harker
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - C. Silva-Batista
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - A. Ragothaman
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - R.L. Folmer
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Medical Center, Portland, OR, USA
- Department of Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - J.F. Quinn
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - F.B. Horak
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| |
Collapse
|
13
|
Xie Y, Pan J, Chen J, Zhang D, Jin S. Acupuncture combined with repeated transcranial magnetic stimulation for upper limb motor function after stroke: A systematic review and meta-analysis. NeuroRehabilitation 2023; 53:423-438. [PMID: 38143390 DOI: 10.3233/nre-230144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Upper limb motor dysfunction after stroke is an important factor affecting patients' motor function and daily life. Acupuncture and repetitive transcranial magnetic stimulation are effective methods for stroke rehabilitation. However, a systematic and comprehensive overview of the combined efficacy of the two is lacking. OBJECTIVE Through a systematic review and meta-analysis of randomized controlled trials, this study aimed to assess the effectiveness of acupuncture combined with repetitive transcranial magnetic stimulation on upper extremity motor function in post-stroke patients. METHODS The relevant randomized controlled trials on acupuncture combined with repetitive transcranial magnetic stimulation in the treatment of upper limb motor disorders after stroke were searched in PubMed, Embase, Cochrane Library, Web of Science CNKI, VIP, Wanfang, and CBM databases. After screening clinical trials that met the inclusion criteria, data extraction was conducted independently by two investigators. Meta-analysis was performed using RevMan 5.4 software. RESULTS After the screening, 18 articles were included, with a total of 1083 subjects. The results of meta-analysis showed that combination therapy could effectively improve the patients' upper limb motor function (MD = 7.77, 95%CI [6.32, 9.22], P < 0.05), ability of daily living (MD = 8.53, 95%CI [6.28, 10.79], P < 0.05), and hemiplegic shoulder pain (MD = - 1.72, 95%CI [- 2.26, - 1.18], P < 0.05). Meanwhile, for neurophysiological indexes, combined treatment could significantly shorten the latency of motor evoked potential and central motor conduction time (MD = - 1.42, 95%CI [- 2.14, - 0.71], P < 0.05); (MD = - 0.47, 95%CI [- 0.66, - 0.29], P < 0.05), and also could increase the amplitude of motor evoked potential (SMD = 0.71, 95%CI [0.28, 1.14], P < 0.05). CONCLUSION According to the results of the meta-analysis, we can conclude that acupuncture combined with repeated transcranial magnetic stimulation can significantly improve the upper limb motor function and daily living ability of stroke patients.
Collapse
Affiliation(s)
- Yulong Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - JuanHong Pan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Jin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Dhami P, Lee J, Schwartzmann B, Knyahnytska Y, Atluri S, Christie GJ, Croarkin PE, Blumberger DM, Daskalakis ZJ, Moreno S, Farzan F. Neurophysiological impact of theta burst stimulation followed by cognitive exercise in treatment of youth depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022; 10:100439. [DOI: 10.1016/j.jadr.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Spurny-Dworak B, Godbersen GM, Reed MB, Unterholzner J, Vanicek T, Baldinger-Melich P, Hahn A, Kranz GS, Bogner W, Lanzenberger R, Kasper S. The Impact of Theta-Burst Stimulation on Cortical GABA and Glutamate in Treatment-Resistant Depression: A Surface-Based MRSI Analysis Approach. Front Mol Neurosci 2022; 15:913274. [PMID: 35909445 PMCID: PMC9328022 DOI: 10.3389/fnmol.2022.913274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Theta burst stimulation (TBS) belongs to one of the biological antidepressant treatment options. When applied bilaterally, excitatory intermittent TBS (iTBS) is commonly targeted to the left and inhibitory continuous TBS (cTBS) to the right dorsolateral prefrontal cortex. TBS was shown to influence neurotransmitter systems, while iTBS is thought to interfere with glutamatergic circuits and cTBS to mediate GABAergic neurotransmission. Objectives: We aimed to expand insights into the therapeutic effects of TBS on the GABAergic and glutamatergic system utilizing 3D-multivoxel magnetic resonance spectroscopy imaging (MRSI) in combination with a novel surface-based MRSI analysis approach to investigate changes of cortical neurotransmitter levels in patients with treatment-resistant depression (TRD). Methods: Twelve TRD patients (five females, mean age ± SD = 35 ± 11 years) completed paired MRSI measurements, using a GABA-edited 3D-multivoxel MEGA-LASER sequence, before and after 3 weeks of bilateral TBS treatment. Changes in cortical distributions of GABA+/tNAA (GABA+macromolecules relative to total N-acetylaspartate) and Glx/tNAA (Glx = mixed signal of glutamate and glutamine), were investigated in a surface-based region-of-interest (ROI) analysis approach. Results: ANCOVAs revealed a significant increase in Glx/tNAA ratios in the left caudal middle frontal area (p corr. = 0.046, F = 13.292), an area targeted by iTBS treatment. Whereas, contralateral treatment with cTBS evoked no alterations in glutamate or GABA concentrations. Conclusion: This study demonstrates surface-based adaptions in the stimulation area to the glutamate metabolism after excitatory iTBS but not after cTBS, using a novel surface-based analysis of 3D-MRSI data. The reported impact of facilitatory iTBS on glutamatergic neurotransmission provides further insight into the neurobiological effects of TBS in TRD.
Collapse
Affiliation(s)
- Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S. Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Wang X, Ge L, Hu H, Yan L, Li L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci 2022; 12:brainsci12070836. [PMID: 35884643 PMCID: PMC9312973 DOI: 10.3390/brainsci12070836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, the potential of non-invasive brain stimulation (NIBS) for the therapeutic effect of post-stroke spasticity has been explored. There are various NIBS methods depending on the stimulation modality, site and parameters. The purpose of this study is to evaluate the efficacy of NIBS on spasticity in patients after stroke. This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. PUBMED (MEDLINE), Web of Science, Cochrane Library and Excerpta Medica Database (EMBASE) were searched for all randomized controlled trials (RCTs) published before December 2021. Two independent researchers screened relevant articles and extracted data. This meta-analysis included 14 articles, and all included articles included 18 RCT datasets. The results showed that repetitive transcranial magnetic stimulation (rTMS) (MD = −0.40, [95% CI]: −0.56 to −0.25, p < 0.01) had a significant effect on improving spasticity, in which low-frequency rTMS (LF-rTMS) (MD = −0.51, [95% CI]: −0.78 to −0.24, p < 0.01) and stimulation of the unaffected hemisphere (MD = −0.58, [95% CI]: −0.80 to −0.36, p < 0.01) were beneficial on Modified Ashworth Scale (MAS) in patients with post-stroke spasticity. Transcranial direct current stimulation (tDCS) (MD = −0.65, [95% CI]: −1.07 to −0.22, p < 0.01) also had a significant impact on post-stroke rehabilitation, with anodal stimulation (MD = −0.74, [95% CI]: −1.35 to −0.13, p < 0.05) being more effective in improving spasticity in patients. This meta-analysis revealed moderate evidence that NIBS reduces spasticity after stroke and may promote recovery in stroke survivors. Future studies investigating the mechanisms of NIBS in addressing spasticity are warranted to further support the clinical application of NIBS in post-stroke spasticity.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Le Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| |
Collapse
|
17
|
Cerebellar noninvasive neuromodulation influences the reactivity of the contralateral primary motor cortex and surrounding areas: a TMS-EMG-EEG study. CEREBELLUM (LONDON, ENGLAND) 2022; 22:319-331. [PMID: 35355218 DOI: 10.1007/s12311-022-01398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Understanding cerebellar-cortical physiological interactions is of fundamental importance to advance the efficacy of neurorehabilitation strategies for patients with cerebellar damage. Previous works have aimed to modulate this pathway by applying transcranial electrical or magnetic stimulation (TMS) over the cerebellum and probing the resulting changes in the primary motor cortex (M1) excitability with motor-evoked potentials (MEPs). While these protocols produce changes in cerebellar excitability, their ability to modulate MEPs has produced inconsistent results, mainly due to the MEP being a highly variable outcome measure that is susceptible to fluctuations in the excitability of M1 neurons and spinal interneurons. To overcome this limitation, we combined TMS with electroencephalography (EEG) to directly record TMS-evoked potentials (TEPs) and oscillations from the scalp. In three sessions, we applied intermittent theta-burst stimulation (iTBS), cathodal direct current stimulation (c-DC) or sham stimulation to modulate cerebellar activity. To assess the effects on M1 and nearby cortex, we recorded TMS-EEG and MEPs before, immediately after (T1) and 15 min (T2) following cerebellar neuromodulation. We found that cerebellar iTBS immediately increased TMS-induced alpha oscillations and produced lasting facilitatory effects on TEPs, whereas c-DC immediately decreased TMS-induced alpha oscillations and reduced TEPs. We also found increased MEP following iTBS but not after c-DC. All of the TMS-EEG measures showed high test-retest repeatability. Overall, this work importantly shows that cerebellar neuromodulation influences both cortical and corticospinal physiological measures; however, they are more pronounced and detailed when utilizing TMS-EEG outcome measures. These findings highlight the advantage of using TMS-EEG over MEPs when assessing the effects of neuromodulation.
Collapse
|
18
|
Dose-response of intermittent theta burst stimulation of the prefrontal cortex: a TMS-EEG study. Clin Neurophysiol 2022; 136:158-172. [DOI: 10.1016/j.clinph.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/01/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023]
|
19
|
Ghin F, Beste C, Stock AK. Neurobiological mechanisms of control in alcohol use disorder - moving towards mechanism-based non-invasive brain stimulation treatments. Neurosci Biobehav Rev 2021; 133:104508. [PMID: 34942268 DOI: 10.1016/j.neubiorev.2021.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is characterized by excessive habitual drinking and loss of control over alcohol intake despite negative consequences. Both of these aspects foster uncontrolled drinking and high relapse rates in AUD patients. Yet, common interventions mostly focus on the phenomenological level, and prioritize the reduction of craving and withdrawal symptoms. Our review provides a mechanistic understanding of AUD and suggests alternative therapeutic approaches targeting the mechanisms underlying dysfunctional alcohol-related behaviours. Specifically, we explain how repeated drinking fosters the development of rigid drinking habits and is associated with diminished cognitive control. These behavioural and cognitive effects are then functionally related to the neurobiochemical effects of alcohol abuse. We further explain how alterations in fronto-striatal network activity may constitute the neurobiological correlates of these alcohol-related dysfunctions. Finally, we discuss limitations in current pharmacological AUD therapies and suggest non-invasive brain stimulation (like TMS and tDCS interventions) as a potential addition/alternative for modulating the activation of both cortical and subcortical areas to help re-establish the functional balance between controlled and automatic behaviour.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Li D, Cheng A, Zhang Z, Sun Y, Liu Y. Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurol 2021; 21:369. [PMID: 34560841 PMCID: PMC8461848 DOI: 10.1186/s12883-021-02406-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been reported to treat muscle spasticity in post-stroke patients. The purpose of this study was to explore whether combined low-frequency rTMS (LF-rTMS) and cerebellar continuous theta burst stimulation (cTBS) could provide better relief than different modalities alone for muscle spasticity and limb dyskinesia in stroke patients. Methods This study recruited ninety stroke patients with hemiplegia, who were divided into LF-rTMS+cTBS group (n=30), LF-rTMS group (n=30) and cTBS group (three pulse bursts at 50 Hz, n=30). The LF-rTMS group received 1 Hz rTMS stimulation of the motor cortical (M1) region on the unaffected side of the brain, the cTBS group received cTBS stimulation to the cerebellar region, and the LF-rTMS+cTBS group received 2 stimuli as described above. Each group received 4 weeks of stimulation followed by rehabilitation. Muscle spasticity, motor function of limb and activity of daily living (ADL) were evaluated by modified Ashworth Scale (MAS), Fugl-Meyer Assessment (FMA) and Modified Barthel Index (MBI) scores, respectively. Results The MAS score was markedly decreased, FMA and MBI scores were markedly increased in the three groups after therapy than before therapy. In addition, after therapy, LF-rTMS+cTBS group showed lower MAS score, higher FMA and MBI scores than the LF-rTMS group and cTBS group. Conclusion Muscle spasticity and limb dyskinesia of the three groups are all significantly improved after therapy. Combined LF-rTMS and cTBS treatment is more effective in improving muscle spasticity and limb dyskinesia of patients after stroke than LF-rTMS and cTBS treatment alone.
Collapse
Affiliation(s)
- Dawei Li
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Aixia Cheng
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Zhiyou Zhang
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Yuqian Sun
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Yingchun Liu
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China.
| |
Collapse
|
21
|
Intermittent Theta Burst Stimulation to the Primary Motor Cortex Reduces Cortical Inhibition: A TMS-EEG Study. Brain Sci 2021; 11:brainsci11091114. [PMID: 34573136 PMCID: PMC8472376 DOI: 10.3390/brainsci11091114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: The aim of this study was to reveal the effects of intermittent theta burst stimulation (iTBS) in modulating cortical networks using transcranial magnetic stimulation and electroencephalography (TMS-EEG) recording. Methods: Eighteen young adults participated in our study and received iTBS to the primary motor cortex (M1), supplementary motor area, and the primary visual cortex in three separate sessions. A finger tapping task and ipsilateral single-pulse TMS-EEG recording for the M1 were administrated before and after iTBS in each session. The effects of iTBS in motor performance and TMS-evoked potentials (TEPs) were investigated. Results: The results showed that iTBS to the M1, but not supplementary motor area or the primary visual cortex, significantly reduced the N100 amplitude of M1 TEPs in bilateral hemispheres (p = 0.019), with a more prominent effect in the contralateral hemisphere than in the stimulated hemisphere. Moreover, only iTBS to the M1 decreased global mean field power (corrected ps < 0.05), interhemispheric signal propagation (t = 2.53, p = 0.030), and TMS-induced early α-band synchronization (p = 0.020). Conclusion: Our study confirmed the local and remote after-effects of iTBS in reducing cortical inhibition in the M1. TMS-induced oscillations after iTBS for changed cortical excitability in patients with various neurological and psychiatric conditions are worth further exploration.
Collapse
|
22
|
Chen T, Su H, Wang L, Li X, Wu Q, Zhong N, Du J, Meng Y, Duan C, Zhang C, Shi W, Xu D, Song W, Zhao M, Jiang H. Modulation of Methamphetamine-Related Attention Bias by Intermittent Theta-Burst Stimulation on Left Dorsolateral Prefrontal Cortex. Front Cell Dev Biol 2021; 9:667476. [PMID: 34414178 PMCID: PMC8370756 DOI: 10.3389/fcell.2021.667476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have identified the treatment effect of repetitive transcranial magnetic stimulation (rTMS) on cravings of patients with methamphetamine use disorder (MUD). However, the mechanism underlying the treatment effect remains largely unknown. A potential candidate mechanism could be that rTMS over the dorsolateral prefrontal cortex (DLPFC) modulates the attention bias to methamphetamine-related cues. The purpose of this study is therefore to determine the modulation of rTMS on methamphetamine-related attention bias and the corresponding electrophysiological changes. Methods Forty-nine patients with severe MUD were included for analysis. The subjects were randomized to receive the active intermittent theta-burst stimulation (iTBS) or sham iTBS targeting DLPFC for 20 sessions. Participants performed the Addiction Stroop Task before and after the treatment while being recorded by a 64-channel electroencephalogram. Baseline characteristics were collected through the Addiction Severity Index. Results Post-treatment evaluations showed a reduced error rate in discriminating the color of methamphetamine words in the active iTBS group compared with the sham iTBS group. Following rTMS treatment, we found the significant time-by-group effect for the N1 amplitude (methamphetamine words > neutral words) and P3 latency (methamphetamine words > neutral words). The change of N1 amplitude was positively correlated with cravings in the active group. Moreover, reduced power of neural oscillation in the beta band, manifesting at frontal central areas, was also found in the active group. Conclusion This study suggests that attention bias and the beta oscillation during the attentional processing of methamphetamine words in patients with MUD could be modulated by iTBS applied to left DLPFC.
Collapse
Affiliation(s)
- Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihui Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianying Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Meng
- Yunnan Institute on Drug Dependence, Kunming, China
| | - Chunmei Duan
- Yunnan Institute on Drug Dependence, Kunming, China
| | | | - Wen Shi
- Shanghai Female Compulsory Rehabilitation Center, Shanghai, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Weidong Song
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep 2021; 11:14777. [PMID: 34285287 PMCID: PMC8292349 DOI: 10.1038/s41598-021-94051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Traditionally, the cerebellum has been linked to motor coordination, but growing evidence points to its involvement in a wide range of non-motor functions. Though the number of studies using transcranial magnetic stimulation (TMS) to investigate cerebellar involvement in cognitive processes is growing exponentially, these findings have not yet been synthesized in a meta-analysis. Here, we used meta-analysis to estimate the effects of cerebellar TMS on performance in cognitive tasks for healthy participants. Outcomes included participants' accuracy and response times (RTs) of several non-motor tasks performed either during or after the administration of TMS. We included overall 41 studies, of which 44 single experiments reported effects on accuracy and 41 on response times (RTs). The meta-analyses showed medium effect sizes (for accuracy: d = 0.61 [95% CI = 0.48, .073]; for RTs: d = 0.40 [95% CI = 0.30, 0.49]), with leave-one-out analyses indicating that cumulative effects were robust, and with moderate heterogeneity. For both accuracy and RTs, the effect of TMS was moderated by the stimulation paradigm adopted but not by the cognitive function investigated, while the timing of the stimulation moderated only the effects on RTs. Further analyses on lateralization revealed no moderation effects of the TMS site. Taken together, these findings indicate that TMS administered over the cerebellum is able to modulate cognitive performance, affecting accuracy or RTs, and suggest that the various stimulation paradigms play a key role in determining the efficacy of cerebellar TMS.
Collapse
Affiliation(s)
- Daniele Gatti
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Luca Rinaldi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ioana Cristea
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Tomaso Vecchi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
24
|
Ashida R, Nazar N, Edwards R, Teo M. Cerebellar Mutism Syndrome: An Overview of the Pathophysiology in Relation to the Cerebrocerebellar Anatomy, Risk Factors, Potential Treatments, and Outcomes. World Neurosurg 2021; 153:63-74. [PMID: 34157457 DOI: 10.1016/j.wneu.2021.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Cerebellar mutism syndrome (CMS) is one the most disabling postoperative neurological complications after posterior fossa surgery in children. CMS is characterized by a transient mutism with a typical onset demonstrated within 2 days postoperatively accompanied by associated ataxia, hypotonia, and irritability. Several hypotheses for the anatomical basis of pathophysiology and risk factors have been suggested. However, a definitive theory and treatment protocols have not yet been determined. Animal histological and electrophysiological studies and more recent human imaging studies have demonstrated the existence of a compartmentalized representation of cerebellar function, the understanding of which might provide more information on the pathophysiology. Damage to the dentatothalamocortical pathway and cerebrocerebellar diaschisis have been described as the anatomical substrate to the CMS. The risk factors, which include tumor type, brainstem invasion, tumor localization, tumor size, and vermal splitting technique, have not yet been clearly elucidated. The efficacy of potential pharmacological and speech therapies has been studied in small trials. Long-term motor speech deficits and associated cognitive and behavioral disturbances have now been found to be common among CMS survivors, affecting their development and requiring rehabilitation, leading to significant financial effects on the healthcare system and distress to the family. The aim of the present review was to outline the cerebellar anatomy and function and its connections in relationship to the pathophysiology and to refine the risk factors and treatment strategies for CMS.
Collapse
Affiliation(s)
- Reiko Ashida
- Department of Neurosurgery, Bristol Institute of Clinical Neuroscience, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Naadir Nazar
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard Edwards
- Department of Paediatric Neurosurgery, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Mario Teo
- Department of Neurosurgery, Bristol Institute of Clinical Neuroscience, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom.
| |
Collapse
|
25
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
26
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
27
|
Xie YJ, Chen Y, Tan HX, Guo QF, Lau BWM, Gao Q. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res 2021; 16:1168-1176. [PMID: 33269766 PMCID: PMC8224108 DOI: 10.4103/1673-5374.300341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcranial magnetic stimulation, a type of noninvasive brain stimulation, has become an ancillary therapy for motor function rehabilitation. Most previous studies have focused on the effects of repetitive transcranial magnetic stimulation (rTMS) on motor function in stroke patients. There have been relatively few studies on the effects of different modalities of rTMS on lower extremity motor function and corticospinal excitability in patients with stroke. The MEDLINE, Embase, Cochrane Library, ISI Science Citation Index, Physiotherapy Evidence Database, China National Knowledge Infrastructure Library, and ClinicalTrials.gov databases were searched. Parallel or crossover randomized controlled trials that addressed the effectiveness of rTMS in patients with stroke, published from inception to November 28, 2019, were included. Standard pairwise meta-analysis was conducted using R version 3.6.1 with the “meta” package. Bayesian network analysis using the Markov chain Monte Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol interventions. Network meta-analysis results of 18 randomized controlled trials regarding lower extremity motor function recovery revealed that low-frequency rTMS had better efficacy in promoting lower extremity motor function recovery than sham stimulation. Network meta-analysis results of five randomized controlled trials demonstrated that high-frequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency rTMS or sham stimulation. These findings suggest that rTMS can improve motor function in patients with stroke, and that low-frequency rTMS mainly affects motor function, whereas high-frequency rTMS increases the amplitudes of motor evoked potentials. More high-quality randomized controlled trials are needed to validate this conclusion. The work was registered in PROSPERO (registration No. CRD42020147055) on April 28, 2020.
Collapse
Affiliation(s)
- Yun-Juan Xie
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Chen
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qiang Gao
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
28
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
29
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
30
|
Transient inhibition of the cerebellum impairs change-detection processes: Cerebellar contributions to sensorimotor integration. Behav Brain Res 2020; 378:112273. [DOI: 10.1016/j.bbr.2019.112273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
|
31
|
Cerebellar transcranial magnetic stimulation: The role of coil type from distinct manufacturers. Brain Stimul 2019; 13:153-156. [PMID: 31631057 DOI: 10.1016/j.brs.2019.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Stimulating the cerebellum with transcranial magnetic stimulation is often perceived as uncomfortable. No study has systematically tested which coil design can effectively trigger a cerebellar response with the least discomfort. OBJECTIVE To determine the relationship between perceived discomfort and effectiveness of cerebellar stimulation using different coils: MagStim (70 mm, 110 mm-coated, 110-uncoated), MagVenture and Deymed. METHODS Using the cerebellar-brain inhibition (CBI) protocol, we conducted a CBI recruitment curve with respect to each participant's maximum tolerated-stimulus intensity (MTI) to assess how effective each coil was at activating the cerebellum. RESULTS Only the Deymed double-cone coil elicited CBI at low intensities (-20% MTI). At the MTI, the MagStim (110 mm coated/uncoated) and Deymed coils produced reliable CBI, whereas no CBI was found with the MagVenture coil. CONCLUSION s: The Deymed double-cone coil was most effective at cerebellar stimulation at tolerable intensities. These results can guide coil selection and stimulation parameters when designing cerebellar TMS studies.
Collapse
|
32
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
33
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Impact of concurrent task performance on transcranial direct current stimulation (tDCS)-Induced changes in cortical physiology and working memory. Cortex 2019; 113:37-57. [DOI: 10.1016/j.cortex.2018.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
|
34
|
Odorfer TM, Homola GA, Reich MM, Volkmann J, Zeller D. Increased Finger-Tapping Related Cerebellar Activation in Cervical Dystonia, Enhanced by Transcranial Stimulation: An Indicator of Compensation? Front Neurol 2019; 10:231. [PMID: 30930842 PMCID: PMC6428698 DOI: 10.3389/fneur.2019.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Cervical dystonia is a movement disorder causing abnormal postures and movements of the head. While the exact pathophysiology of cervical dystonia has not yet been fully elucidated, a growing body of evidence points to the cerebellum as an important node. Methods: Here, we examined the impact of cerebellar interference by transcranial magnetic stimulation on finger-tapping related brain activation and neurophysiological measures of cortical excitability and inhibition in cervical dystonia and controls. Bilateral continuous theta-burst stimulation was used to modulate cerebellar cortical excitability in 16 patients and matched healthy controls. In a functional magnetic resonance imaging arm, data were acquired during simple finger tapping before and after cerebellar stimulation. In a neurophysiological arm, assessment comprised motor-evoked potentials amplitude and cortical silent period duration. Theta-burst stimulation over the dorsal premotor cortex and sham stimulation (neurophysiological arm only) served as control conditions. Results: At baseline, finger tapping was associated with increased activation in the ipsilateral cerebellum in patients compared to controls. Following cerebellar theta-burst stimulation, this pattern was even more pronounced, along with an additional movement-related activation in the contralateral somatosensory region and angular gyrus. Baseline motor-evoked potential amplitudes were higher and cortical silent period duration shorter in patients compared to controls. After cerebellar theta-burst stimulation, cortical silent period duration increased significantly in dystonia patients. Conclusion: We conclude that in cervical dystonia, finger movements—though clinically non-dystonic—are associated with increased activation of the lateral cerebellum, possibly pointing to general motor disorganization, which remains subclinical in most body regions. Enhancement of this activation together with an increase of silent period duration by cerebellar continuous theta-burst stimulation may indicate predominant disinhibitory effects on Purkinje cells, eventually resulting in an inhibition of cerebello-thalamocortical circuits.
Collapse
Affiliation(s)
| | - György A Homola
- Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Li CT, Huang YZ, Bai YM, Tsai SJ, Su TP, Cheng CM. Critical role of glutamatergic and GABAergic neurotransmission in the central mechanisms of theta-burst stimulation. Hum Brain Mapp 2019; 40:2001-2009. [PMID: 30600571 DOI: 10.1002/hbm.24485] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Theta-burst stimulation (TBS) is a varied form of repetitive transcranial magnetic stimulation (rTMS) and has more rapid and powerful effects than rTMS. Experiments on the human motor cortex have demonstrated that intermittent TBS has facilitatory effects, whereas continuous TBS has inhibitory effects. Huang's simplified model provides a solid basis for elucidating such after-effects. However, evidence increasingly indicates that not all after-effects of TBS are as expected, and high variability among individuals has been observed. Studies have suggested that the GABAergic and glutamatergic neurotransmission play a vital role in the aforementioned after-effects, which might explain the interindividual differences in these after-effects. Herein, we reviewed the latest findings on TBS from animal and human experiments on glutamatergic and GABAergic neurotransmissions in response to TBS. Furthermore, an updated theoretical model integrating glutamatergic and GABAergic neurotransmissions is proposed.
Collapse
Affiliation(s)
- Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - Ying-Zu Huang
- Department of Medicine, School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
36
|
Fečíková A, Jech R, Čejka V, Čapek V, Šťastná D, Štětkářová I, Mueller K, Schroeter ML, Růžička F, Urgošík D. Benefits of pallidal stimulation in dystonia are linked to cerebellar volume and cortical inhibition. Sci Rep 2018; 8:17218. [PMID: 30464181 PMCID: PMC6249276 DOI: 10.1038/s41598-018-34880-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Clinical benefits of pallidal deep brain stimulation (GPi DBS) in dystonia increase relatively slowly suggesting slow plastic processes in the motor network. Twenty-two patients with dystonia of various distribution and etiology treated by chronic GPi DBS and 22 healthy subjects were examined for short-latency intracortical inhibition of the motor cortex elicited by paired transcranial magnetic stimulation. The relationships between grey matter volume and intracortical inhibition considering the long-term clinical outcome and states of the GPi DBS were analysed. The acute effects of GPi DBS were associated with a shortening of the motor response whereas the grey matter of chronically treated patients with a better clinical outcome showed hypertrophy of the supplementary motor area and cerebellar vermis. In addition, the volume of the cerebellar hemispheres of patients correlated with the improvement of intracortical inhibition which was generally less effective in patients than in controls regardless of the DBS states. Importantly, good responders to GPi DBS showed a similar level of short-latency intracortical inhibition in the motor cortex as healthy controls whereas non-responders were unable to increase it. All these results support the multilevel impact of effective DBS on the motor networks in dystonia and suggest potential biomarkers of responsiveness to this treatment.
Collapse
Affiliation(s)
- Anna Fečíková
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.
| | - Václav Čejka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.,Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Václav Čapek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Daniela Šťastná
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
37
|
Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, Fitzgerald PB. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum Brain Mapp 2018; 40:608-627. [PMID: 30251765 DOI: 10.1002/hbm.24398] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have highlighted variability in response to theta burst stimulation (TBS) in humans. TBS paradigm was originally developed in rodents to mimic gamma bursts coupled with theta rhythms, and was shown to elicit long-term potentiation. The protocol was subsequently adapted for humans using standardised frequencies of stimulation. However, each individual has different rhythmic firing pattern. The present study sought to explore whether individualised intermittent TBS (Ind iTBS) could outperform the effects of two other iTBS variants. Twenty healthy volunteers received iTBS over left prefrontal cortex using 30 Hz at 6 Hz, 50 Hz at 5 Hz, or individualised frequency in separate sessions. Ind iTBS was determined using theta-gamma coupling during the 3-back task. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) was used to track changes in cortical plasticity. We also utilised mood ratings using a visual analogue scale and assessed working memory via the 3-back task before and after stimulation. No group-level effect was observed following either 30 or 50 Hz iTBS in TMS-EEG. Ind iTBS significantly increased the amplitude of the TMS-evoked P60, and decreased N100 and P200 amplitudes. A significant positive correlation between neurophysiological change and change in mood rating was also observed. Improved accuracy in the 3-back task was observed following both 50 Hz and Ind iTBS conditions. These findings highlight the critical importance of frequency in the parameter space of iTBS. Tailored stimulation parameters appear more efficacious than standard paradigms in neurophysiological and mood changes. This novel approach presents a promising option and benefits may extend to clinical applications.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
38
|
TMS evoked N100 reflects local GABA and glutamate balance. Brain Stimul 2018; 11:1071-1079. [PMID: 29759942 DOI: 10.1016/j.brs.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 05/02/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Animal studies suggest that synchronized electrical activities in the brain are regulated by the primary inhibitory and excitatory neurotransmitters gamma-aminobutyric acid (GABA) and glutamate, respectively. Identifying direct evidence that this same basic chemical-electrical neuroscience principle operates in the human brains is critical for translation of neuroscience to pathological research. OBJECTIVE/HYPOTHESIS We hypothesize that the background neurochemical concentrations may affect the cortical excitability probed by transcranial magnetic stimulation (TMS). METHODS We used TMS with simultaneous evoked potential recording to probe the cortical excitability and determined how background frontal cortical GABA and glutamate levels measured using magnetic resonance spectroscopy (MRS) modulate frontal electrical activities. RESULTS We found that TMS-evoked N100 reflects a balance between GABA-inhibitory and glutamate-excitatory levels. About 46% of individual variances in frontal N100 can be explained by their glutamate/GABA ratio (r = -0.68, p = 0.001). Both glutamate (r = -0.51, p = 0.019) and GABA (r = 0.55, p = 0.01) significantly contributed to this relationship but in opposite directions. CONCLUSION The current finding encourages additional mechanistic studies to develop TMS evoked N100 as a potential electrophysiological biomarker for translating the known inhibitory GABAergic vs. excitatory glutamatergic chemical-electrical principle from animal brain studies to human brain studies.
Collapse
|
39
|
The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul 2018; 11:566-574. [DOI: 10.1016/j.brs.2018.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/18/2017] [Accepted: 01/04/2018] [Indexed: 01/26/2023] Open
|
40
|
Moliadze V, Lyzhko E, Schmanke T, Andreas S, Freitag CM, Siniatchkin M. 1 mA cathodal tDCS shows excitatory effects in children and adolescents: Insights from TMS evoked N100 potential. Brain Res Bull 2018; 140:43-51. [PMID: 29625151 DOI: 10.1016/j.brainresbull.2018.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
In children and adolescents, 1 mA transcranial direct current stimulation (tDCS) may cause "paradoxical" effects compared with adults: both 1 mA anodal and cathodal tDCS increase amplitude of the motor evoked potential (MEP) as revealed by a single pulse transcranial magnetic stimulation (TMS) of the motor cortex. Here, EEG based evoked potentials induced by a single pulse TMS, particularly the N100 component as marker of motor cortex inhibition, were investigated in order to explain effects of tDCS on the developing brain. In nineteen children and adolescents (11-16 years old), 1 mA anodal, cathodal, or sham tDCS was applied over the left primary motor cortex for 10 min. The TMS-evoked N100 was measured by 64-channel EEG before and immediately after stimulation as well as every 10 min after tDCS for one hour. 1 mA Cathodal stimulation suppressed the N100 amplitude compared with sham stimulation. In contrast, anodal tDCS did not modify the N100 amplitude. It seems likely that the increase of the motor cortex activity under cathodal tDCS in children and adolescents as shown in previous studies can be attributed to a reduce inhibition. Based on TMS evoked N100, the study provides an insight into neuromodulatory effects of tDCS on the developing brain.
Collapse
Affiliation(s)
- Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany.
| | - Ekaterina Lyzhko
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany
| | - Till Schmanke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Saskia Andreas
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Abstract
Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Collapse
|
42
|
Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci Biobehav Rev 2017; 86:176-206. [PMID: 29208533 DOI: 10.1016/j.neubiorev.2017.11.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022]
Abstract
The inhibitory tone that the cerebellum exerts on the primary motor cortex (M1) is known as cerebellar brain inhibition (CBI). Studies show CBI to be relevant to several motor functions, including adaptive motor learning and muscle control. CBI can be assessed noninvasively via transcranial magnetic stimulation (TMS) using a double-coil protocol. Variability in parameter choice and controversy surrounding the protocol's ability to isolate the cerebellothalamocortical pathway casts doubt over its validity in neuroscience research. This justifies a systematic review of both the protocol, and its application. The following review examines studies using the double-coil protocol to assess CBI in healthy adults. Parameters and CBI in relation to task-based studies, other non-invasive protocols, over different muscles, and in clinical samples are reviewed. Of the 1398 studies identified, 24 met selection criteria. It was found that methodological design and selection of parameters in several studies may have reduced the validity of outcomes. Further systematic testing of CBI protocols is warranted, both from a parameter and task-based perspective.
Collapse
Affiliation(s)
- Lara Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia.
| | - Brendan P Major
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, 3220, Australia
| | - Linda K Byrne
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia; Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
43
|
Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp 2017; 39:783-802. [PMID: 29124791 DOI: 10.1002/hbm.23882] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Camberwell, VIC, Australia
| |
Collapse
|
44
|
Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani A, Downar J, Chen J, Chen R. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. Neuroimage 2017; 158:48-57. [DOI: 10.1016/j.neuroimage.2017.06.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/27/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
|
45
|
Chung SW, Lewis BP, Rogasch NC, Saeki T, Thomson RH, Hoy KE, Bailey NW, Fitzgerald PB. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin Neurophysiol 2017; 128:1117-1126. [DOI: 10.1016/j.clinph.2017.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
|
46
|
Bologna M, Berardelli A. Cerebellum: An explanation for dystonia? CEREBELLUM & ATAXIAS 2017; 4:6. [PMID: 28515949 PMCID: PMC5429509 DOI: 10.1186/s40673-017-0064-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
Dystonia is a movement disorder that is characterized by involuntary muscle contractions, abnormal movements and postures, as well as by non-motor symptoms, and is due to abnormalities in different brain areas. In this article, we focus on the growing number of experimental studies aimed at explaining the pathophysiological role of the cerebellum in dystonia. Lastly, we highlight gaps in current knowledge and issues that future research studies should focus on as well as some of the potential applications of this research avenue. Clarifying the pathophysiological role of cerebellum in dystonia is an important concern given the increasing availability of invasive and non-invasive stimulation techniques and their potential therapeutic role in this condition.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| |
Collapse
|
47
|
Tremblay S, Austin D, Hannah R, Rothwell JC. Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. CEREBELLUM & ATAXIAS 2016; 3:19. [PMID: 27895926 PMCID: PMC5111316 DOI: 10.1186/s40673-016-0057-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022]
Abstract
The recent development of non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) has allowed the non-invasive assessment of cerebellar function in humans. Early studies showed that cerebellar activity, as reflected in the excitability of the dentate-thalamo-cortical pathway, can be assessed with paired stimulation of the cerebellum and the primary motor cortex (M1) (cerebellar inhibition of motor cortex, CBI). Following this, many attempts have been made, using techniques such as repetitive TMS and transcranial electrical stimulation (TES), to modulate the activity of the cerebellum and the dentate-thalamo-cortical output, and measure their impact on M1 activity. The present article reviews literature concerned with the impact of non-invasive stimulation of cerebellum on M1 measures of excitability and "plasticity" in both healthy and clinical populations. The main conclusion from the 27 reviewed articles is that the effects of cerebellar "plasticity" protocols on M1 activity are generally inconsistent. Nevertheless, two measurements showed relatively reproducible effects in healthy individuals: reduced response of M1 to sensorimotor "plasticity" (paired-associative stimulation, PAS) and reduced CBI following repetitive TMS and TES. We discuss current challenges, such as the low power of reviewed studies, variability in stimulation parameters employed and lack of understanding of physiological mechanisms underlying CBI.
Collapse
Affiliation(s)
- Sara Tremblay
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Duncan Austin
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| |
Collapse
|
48
|
Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, Koch G. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep 2016; 6:36191. [PMID: 27796359 PMCID: PMC5086958 DOI: 10.1038/srep36191] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas. On the oscillatory domain, TBS induced specific changes over M1 natural frequencies of oscillation: TMS-evoked alpha activity was decreased by cTBS whereas beta activity was enhanced by iTBS. No effects were observed after sham stimulation. Our data provide novel evidence showing that the cerebellum exerts its control on the cortex likely by impinging on specific set of interneurons dependent on GABA-ergic activity. We show that cerebellar TBS modulates cortical excitability of distant interconnected cortical areas by acting through common temporal, spatial and frequency domains.
Collapse
Affiliation(s)
- Elias Paolo Casula
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Maria Concetta Pellicciari
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viviana Ponzo
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Domenica Veniero
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Tor Vergata Policlinic, Rome, Italy
| |
Collapse
|
49
|
Bologna M, Paparella G, Fabbrini A, Leodori G, Rocchi L, Hallett M, Berardelli A. Effects of cerebellar theta-burst stimulation on arm and neck movement kinematics in patients with focal dystonia. Clin Neurophysiol 2016; 127:3472-3479. [PMID: 27721106 DOI: 10.1016/j.clinph.2016.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 09/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the cerebellar inhibitory influence on the primary motor cortex in patients with focal dystonia using a cerebellar continuous theta-burst stimulation protocol (cTBS) and to evaluate any relationship with movement abnormalities. METHODS Thirteen patients with focal hand dystonia, 13 patients with cervical dystonia and 13 healthy subjects underwent two sessions: (i) cTBS over the cerebellar hemisphere (real cTBS) and (ii) cTBS over the neck muscles (sham cTBS). The effects of cerebellar cTBS were quantified as excitability changes in the contralateral primary motor cortex, as well as possible changes in arm and neck movements in patients. RESULTS Real cerebellar cTBS reduced the excitability in the contralateral primary motor cortex in healthy subjects and in patients with cervical dystonia, though not in patients with focal hand dystonia. There was no correlation between changes in primary motor cortex excitability and arm and neck movement kinematics in patients. There were no changes in clinical scores or in kinematic measures, after either real or sham cerebellar cTBS in patients. CONCLUSIONS The reduced cerebellar inhibitory modulation of primary motor cortex excitability in focal dystonia may be related to the body areas affected by dystonia as opposed to being a widespread pathophysiological abnormality. SIGNIFICANCE The present study yields information on the differential role played by the cerebellum in the pathophysiology of different focal dystonias.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy
| | - Giulia Paparella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Andrea Fabbrini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Giorgio Leodori
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke - NINDS, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy.
| |
Collapse
|
50
|
Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev 2016; 29:66-89. [PMID: 27221544 DOI: 10.1016/j.arr.2016.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/01/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.
Collapse
|