1
|
Wang X, Liang X, Wang R, Gao Y, Li Y, Shi H, Gong W, Saleem S, Zou Q, Tao L, Kang Z, Yang J, Yu Q, Wu Q, Liu H, Fu S. A breeding method for Ogura CMS restorer line independent of restorer source in Brassica napus. Front Genet 2025; 15:1521277. [PMID: 39834543 PMCID: PMC11743515 DOI: 10.3389/fgene.2024.1521277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The Ogura cytoplasmic male sterility (CMS) line of Brassica napus has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of Brassica napus is derived from the distant hybridization of Raphanus sativus L. and B. napus, but it carried a large number of radish fragments into Brassica napus, because there is no homologous allele of the restorer gene in B. napus, transferring it becomes challenging. In this study, the double haploid induction line in B. napus was used as the male parent for hybridization with the Ogura CMS of B. napus. Surprisingly, fertile plants appeared in the offspring. Further analysis revealed that the cytoplasmic type, ploidy, and chromosome number of the fertile offspring were consistent with the sterile female parent. Moreover, the mitochondrial genome similarity between the fertile offspring and the sterile female parent was 97.7% indicates that the cytoplasm of the two is the same, while the nuclear gene difference between fertile offspring and sterile female parent was only 10.33%, indicates that new genes appeared in the offspring. To further investigate and locate the restorer gene, the BSA method was employed to construct extreme mixed pools. As a result, the restorer gene was mapped to three positions: A09 chromosome 10.99-17.20 Mb, C03 chromosome 5.07-5.34 Mb, and C09 chromosome 18.78-36.60 Mb. The experimental results have proved that induction does produce restorer genes. The induction of the Ogura CMS restorer gene through DH induction line provides a promising new approach for harnessing heterosis in B. napus.
Collapse
Affiliation(s)
- Xuesong Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yuan Gao
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yun Li
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Haoran Shi
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Wanzhuo Gong
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Saira Saleem
- Oilseeds Research Station, Khanpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Qiong Zou
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Lanrong Tao
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Zeming Kang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Jin Yang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qin Yu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qiaobo Wu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Hailan Liu
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shaohong Fu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| |
Collapse
|
2
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
3
|
Zhou Y, Yang M, Zhao S, Shi H, Li Y, Gong W, Yang J, Wang J, Zou Q, Tao L, Kang Z, Tang R, Guo S, Fu S. Rapid Creation of Interspecific Hybrid Progeny to Broaden Genetic Distance through Double Haploid (DH) Inducer in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050695. [PMID: 35270165 PMCID: PMC8912716 DOI: 10.3390/plants11050695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 05/31/2023]
Abstract
Interspecific hybridization of rapeseed is an important way to innovate breeding resources. This research used Brassica napus and Brassica rapa for artificial synthesis interspecific hybridization of F1. The F1 self-fruiting rate was particularly low. By comparing the fertilization rate and seed setting rate of nine crosses and selfing combinations of interspecific hybrid progeny F1 and control B. napus, the results proved that the genetic stability of egg cells was greater than that of sperm cells, so the F1 could get seed by artificial pollination with other normal pollen. Based on these results, interspecific maternal inbred offspring (induced F1) from egg cells was obtained by emasculation and pollination with the pollen of DH inducer Y3380. It was found through morphological analysis, flow cytometry identification, and meiotic observation of induced F1, the plants had most normal fertile tetraploid and the meiosis was normal. The FISH results showed that the induced F1 were B. napus (2n = 4x = 38, AACC), 20 A and 19 C chromosomes. The results of SNP chip detection and genetic cluster analysis found that the genetic variation between interspecies could be preserved or broadened in the induced F1. The use of DH inducer created special breeding resources for interspecific hybridization and distant hybridization of rapeseed while shortening time, improving efficiency, and providing a new insight into innovate breeding resources.
Collapse
Affiliation(s)
- Ying Zhou
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Meicui Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shihui Zhao
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoran Shi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Yun Li
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Wanzhuo Gong
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Jin Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Jisheng Wang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Qiong Zou
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Lanrong Tao
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Zeming Kang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Rong Tang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Shixing Guo
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaohong Fu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| |
Collapse
|
4
|
Qiao J, Zhang X, Chen B, Huang F, Xu K, Huang Q, Huang Y, Hu Q, Wu X. Comparison of the cytoplastic genomes by resequencing: insights into the genetic diversity and the phylogeny of the agriculturally important genus Brassica. BMC Genomics 2020; 21:480. [PMID: 32660507 PMCID: PMC7359470 DOI: 10.1186/s12864-020-06889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background The genus Brassica mainly comprises three diploid and three recently derived allotetraploid species, most of which are highly important vegetable, oil or ornamental crops cultivated worldwide. Despite being extensively studied, the origination of B. napus and certain detailed interspecific relationships within Brassica genus remains undetermined and somewhere confused. In the current high-throughput sequencing era, a systemic comparative genomic study based on a large population is necessary and would be crucial to resolve these questions. Results The chloroplast DNA and mitochondrial DNA were synchronously resequenced in a selected set of Brassica materials, which contain 72 accessions and maximally integrated the known Brassica species. The Brassica genomewide cpDNA and mtDNA variations have been identified. Detailed phylogenetic relationships inside and around Brassica genus have been delineated by the cpDNA- and mtDNA- variation derived phylogenies. Different from B. juncea and B. carinata, the natural B. napus contains three major cytoplasmic haplotypes: the cam-type which directly inherited from B. rapa, polima-type which is close to cam-type as a sister, and the mysterious but predominant nap-type. Certain sparse C-genome wild species might have primarily contributed the nap-type cytoplasm and the corresponding C subgenome to B. napus, implied by their con-clustering in both phylogenies. The strictly concurrent inheritance of mtDNA and cpDNA were dramatically disturbed in the B. napus cytoplasmic male sterile lines (e.g., mori and nsa). The genera Raphanus, Sinapis, Eruca, Moricandia show a strong parallel evolutional relationships with Brassica. Conclusions The overall variation data and elaborated phylogenetic relationships provide further insights into genetic understanding of Brassica, which can substantially facilitate the development of novel Brassica germplasms.
Collapse
Affiliation(s)
- Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Xiaojun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Fu T, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R. Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. PLANTA 2018; 247:113-125. [PMID: 28879514 DOI: 10.1007/s00425-017-2772-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/02/2017] [Indexed: 05/18/2023]
Abstract
We found a new in vivo route to produce maternal doubled haploid of Brassica napus . The pollen donor, an allooctaploid rapeseed, acts as a DH inducer. Inbred line has a powerful advantage in cultivar breeding and genetic analysis. Compared to the traditional breeding methods, doubled haploid production can save years off the breeding process. Though genotype-dependent tissue culture methods are widely used in the Brassica crops, seed-based in vivo doubled haploid developing systems are rare in nature and in the laboratory. As interspecific cross and interploid hybridization play an important role in genome evolution and plant speciation, we created a new Brassica artificial hybrid, a Brassica allooctaploid (AAAACCCC, 2n = 8× = 76), by interspecific crossing and genome doubling. A homozygous line was observed at the third self-generation of a synthesized Brassica allohexaploid (AAAACC, 2n = 6× = 58). Crosses between B. napus as female and Brassica allooctaploid as pollen donor were conducted, which yielded maternal doubled haploid B. napus that were identified based on phenotype, ploidy, and molecular analysis. The Brassica octaploid acted as a maternal doubled haploid inducer and had a relatively high induction rate. Our research provides a new insight for generation of homozygous lines in vivo using a single-step approach, as well as promotes the understanding in breeding programs and genetic studies involving the Brassicas.
Collapse
Affiliation(s)
- Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liqin Yin
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingchao Xu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Leshan Academy of Agricultural Science, Leshan, China
| | - Yun Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China.
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| |
Collapse
|
6
|
Sora D, Kron P, Husband BC. Genetic and environmental determinants of unreduced gamete production in Brassica napus, Sinapis arvensis and their hybrids. Heredity (Edinb) 2016; 117:440-448. [PMID: 27577694 PMCID: PMC5117845 DOI: 10.1038/hdy.2016.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Unreduced gametes, sperm or egg cells with the somatic chromosome number, are an important mechanism of polyploid formation and gene flow between heteroploid plants. The meiotic processes leading to unreduced gamete formation are well documented, but the relative influence of environmental and genetic factors on the frequency of unreduced gametes remain largely untested. Furthermore, direct estimates of unreduced gametes based on DNA content are technically challenging and, hence, uncommon. Here, we use flow cytometry to measure the contribution of genetic (hybridization) and environmental (nutrient limitation, wounding) changes to unreduced male gamete production in Brassica napus, Sinapis arvensis and two hybrid lines. Treatments were applied to greenhouse grown plants in a random factorial design, with pollen sampled at two time intervals. Overall, the frequency of unreduced gametes averaged 0.59% (range 0.06-2.17%), plus a single outlier with 27%. Backcrossed hybrids had 39 to 75% higher unreduced gamete production than parental genotypes, averaged across all treatments, although the statistical significance of these differences depended on sampling period and wounding treatment. Unreduced gamete frequencies were higher for the second sampling period than the first. There were no direct effects of wounding or nutrient regime. Our results indicate that both genetic and environmental factors can induce increased unreduced gametes, highlighting the potential importance of environmental heterogeneity and genetic composition of populations in driving polyploid evolution.
Collapse
Affiliation(s)
- D Sora
- Department of Biology, Bioscience Complex, Queen's University, Kingston, Ontario, Canada
| | - P Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - B C Husband
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|