1
|
Ghafoori SM, Abdollahpour S, Shirmast P, Forwood JK. Crystallographic structure determination and analysis of a potential short-chain dehydrogenase/reductase (SDR) from multi-drug resistant Acinetobacter baumannii. PLoS One 2023; 18:e0289992. [PMID: 37616198 PMCID: PMC10449147 DOI: 10.1371/journal.pone.0289992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Bacterial antibiotic resistance remains an ever-increasing worldwide problem, requiring new approaches and enzyme targets. Acinetobacter baumannii is recognised as one of the most significant antibiotic-resistant bacteria, capable of carrying up to 45 different resistance genes, and new drug discovery targets for this organism is an urgent priority. Short-chain dehydrogenase/reductase enzymes are a large protein family with >60,000 members involved in numerous biosynthesis pathways. Here, we determined the structure of an SDR protein from A. baumannii and assessed the putative co-factor comparisons with previously co-crystalised enzymes and cofactors. This study provides a basis for future studies to examine these potential co-factors in vitro.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | - Soha Abdollahpour
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | - Paniz Shirmast
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| |
Collapse
|
2
|
Contrasting genome patterns of two pseudomonas strains isolated from the date palm rhizosphere to assess survival in a hot arid environment. World J Microbiol Biotechnol 2022; 38:207. [PMID: 36008694 DOI: 10.1007/s11274-022-03392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
The plant growth-promoting rhizobacteria (PGPRs) improve plant growth and fitness by multiple direct (nitrogen fixation and phosphate solubilization) and indirect (inducing systematic resistance against phytopathogens, soil nutrient stabilization, and maintenance) mechanisms. Nevertheless, the mechanisms by which PGPRs promote plant growth in hot and arid environments remain poorly recorded. In this study, a comparative genome analysis of two phosphate solubilizing bacteria, Pseudomonas atacamensis SM1 and Pseudomonas toyotomiensis SM2, isolated from the rhizosphere of date palm was performed. The abundance of genes conferring stress tolerance (chaperones, heat shock genes, and chemotaxis) and supporting plant growth (plant growth hormone, root colonization, nitrogen fixation, and phosphate solubilization) were compared among the two isolates. This study further evaluated their functions, metabolic pathways, and evolutionary relationship. Results show that both bacterial strains have gene clusters required for plant growth promotion (phosphate solubilization and root colonization), but it is more abundant in P. atacamensis SM1 than in P. toyotomiensis SM2. Genes involved in stress tolerance (mcp, rbs, wsp, and mot), heat shock, and chaperones (hslJ and hslR) were also more common in P. atacamensis SM1. These findings suggest that P. atacamensis SM1could have better adaptability to the hot and arid environment owing to a higher abundance of chaperone genes and heat shock proteins. It may promote plant growth owing to a higher load of root colonization and phosphate solubilization genes and warrants further in vitro study.
Collapse
|
3
|
Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken. Animals (Basel) 2021; 11:ani11113155. [PMID: 34827887 PMCID: PMC8614574 DOI: 10.3390/ani11113155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Although the ileum and caecum represent adjacent parts of the gastrointestinal tract, both compartments differ by function as well as inner environment parameters such as oxygen availability or density of colonising microbiota. As the function of a particular tissue is generally reflected by protein expression, mass spectrometry proteomics was used to characterise expressed proteins of both segments of the gastrointestinal tract. Differentially expressed proteins were identified and grouped according to biological processes specific to both gut compartments. Abstract Sections of chicken gut differ in many aspects, e.g., the passage of digesta (continuous vs. discontinuous), the concentration of oxygen, and the density of colonising microbiota. Using an unbiased LC-MS/MS protocol, we compared protein expression in 18 ileal and 57 caecal tissue samples that originated from 7-day old ISA brown chickens. We found that proteins specific to the ileum were either structural (e.g., 3 actin isoforms, villin, or myosin 1A), or those required for nutrient digestion (e.g., sucrose isomaltase, maltase–glucoamylase, peptidase D) and absorption (e.g., fatty acid-binding protein 2 and 6 or bile acid–CoA:amino acid N-acyltransferase). On the other hand, proteins characteristic of the caecum were involved in sensing and limiting the consequences of oxidative stress (e.g., thioredoxin, peroxiredoxin 6), cell adhesion, and motility associated with wound healing (e.g., fibronectin 1, desmoyokin). These mechanisms are coupled with the activation of mechanisms suppressing the inflammatory response (galectin 1). Rather prominent were also expressions of proteins linked to hydrogen sulphide metabolism in caecum represented by cystathionin beta synthase, selenium-binding protein 1, mercaptopyruvate sulphurtransferase, and thiosulphate sulphurtransferase. Higher mRNA expression of nuclear factor, erythroid 2-like 2, the main oxidative stress transcriptional factor in caecum, further supported our observations.
Collapse
|
4
|
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Sci Rep 2021; 11:7050. [PMID: 33782435 PMCID: PMC8007833 DOI: 10.1038/s41598-021-86400-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.
Collapse
|
5
|
Li H, Li Y, Yang L, Zhang D, Liu Z, Wang Y, Han R, Li G, Li Z, Tian Y, Kang X, Liu X. Identification of a Novel Lipid Metabolism-Associated Hepatic Gene Family Induced by Estrogen via ERα in Chicken ( Gallus gallus). Front Genet 2020; 11:271. [PMID: 32296460 PMCID: PMC7136477 DOI: 10.3389/fgene.2020.00271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Liver is the main organ of lipid metabolism in chicken, especially for laying hens. To explore the molecular mechanism of lipid metabolism in chicken, five novel genes discovered in chicken liver tissue were systematically studied. Bioinformatic analysis was used to analyze the gene characteristics. The expression patterns and regulatory molecular mechanism of the five genes were examined. Our results showed that all five novel genes contain a common NADP-binding site that belongs to the NADB-Rossmann superfamily, and the genes were designated NADB-LER1-5. Phylogenetic tree of the NADB-LERs gene family in different species suggested these five genes originated from the same ancestor. Tissue distributions showed that NADB-LER1-4 genes were highly expressed in lipid metabolism organs, including liver, kidney and duodenum, and that the NADB-LER5 gene was highly expressed in liver and kidney. The spatiotemporal expression indicated that the expression levels of NADB-LER1-5 genes in liver tissue were significantly greater in sexually mature hens than that of immature pullets (P-value ≤ 0.05). The expression levels of NADB-LER1-5 were significantly induced by 17β-estradiol in primary cultured chicken embryo hepatocytes (P-value ≤ 0.05), and 17β-estradiol regulated the expression of NADB-LER1-5 mediated by ERα. Individual assays verified that under induction of 17β-estradiol, the five novel genes were significantly upregulated, with subsequent alteration in serum TG, TC, and VLDLs in 10-week-old pullets. This study proved NADB-LERs family mainly expressed in liver, kidney, and duodenum tissues. 17β-estradiol induces the expression of NADB-LER1-5 genes predominantly mediated via ERα. They likely involved in lipid metabolism in the liver of chicken.
Collapse
Affiliation(s)
- Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Liyu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dingding Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ziming Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii. Biochem Biophys Res Commun 2019; 518:465-471. [PMID: 31443964 DOI: 10.1016/j.bbrc.2019.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria A. baumannii, previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Å and the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.
Collapse
|
7
|
Grammbitter GLC, Schmalhofer M, Karimi K, Shi YM, Schöner TA, Tobias NJ, Morgner N, Groll M, Bode HB. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J Am Chem Soc 2019; 141:16615-16623. [DOI: 10.1021/jacs.8b10776] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gina L. C. Grammbitter
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Maximilian Schmalhofer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kudratullah Karimi
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Yi-Ming Shi
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Tim A. Schöner
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Nicholas J. Tobias
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Nina Morgner
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Phathanathavorn T, Naloka K, Matsutani M, Yakushi T, Matsushita K, Theeragool G. Mutated fabG gene encoding oxidoreductase enhances the cost-effective fermentation of jasmine rice vinegar in the adapted strain of Acetobacter pasteurianus SKU1108. J Biosci Bioeng 2019; 127:690-697. [PMID: 30679112 DOI: 10.1016/j.jbiosc.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/23/2023]
Abstract
A low-nutrient adapted strain, Acetobacter pasteurianus G-40, was successfully obtained by repetitive cultivation of A. pasteurianus 7E-13 under selective pressure. The adapted strain could grow well and produce 3.45-fold higher amounts of acetic acid than 7E-13 in jasmine rice wine containing 6% ethanol at 37 °C in a shaking flask. The G-40 strain also exhibited higher amounts of acetic acid (5.16%) in 2-L jar fermentor compared with 7E-13, where the bio-conversion yield to acetic acid from ethanol was 71% and 55.5% in the adapted strain and parental strain, respectively. In addition, genome sequence analysis of G-40 revealed that the strain has mutations in the 6 genes, of which the fabG gene encoding oxidoreductase is largely mutated by the partial recombination with a highly homologous fabG homolog present in the large plasmid of the strain. Over-expression of the mutated fabG gene and also the replacement of the original fabG gene in the chromosome with the mutated one obviously enhanced growth and acetic acid production of 7E-13 in the rice wine without any nutrient supplementation, indicating that the mutation in the fabG gene is mainly involved in higher fermentation ability under low-nutrient conditions. Thus, the results suggest that the adapted G-40 strain has proven useful for the cost-effective fermentation of rice vinegar.
Collapse
Affiliation(s)
| | - Kallayanee Naloka
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Minenosuke Matsutani
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshiharu Yakushi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Gunjana Theeragool
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
9
|
Binding of NADP + triggers an open-to-closed transition in a mycobacterial FabG β-ketoacyl-ACP reductase. Biochem J 2017; 474:907-921. [PMID: 28126742 DOI: 10.1042/bcj20161052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
Abstract
The ketoacyl-acyl carrier protein (ACP) reductase FabG catalyzes the NADPH/NADH dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products, the first reductive step in the fatty acid biosynthesis elongation cycle. FabG proteins are ubiquitous in bacteria and are part of the type II fatty acid synthase system. Mining the Mycobacterium smegmatis genome uncovered several putative FabG-like proteins. Among them, we identified M. smegmatis MSMEG_6753 whose gene was found adjacent to MSMEG_6754, encoding a recently characterized enoyl-CoA dehydratase, and to MSMEG_6755, encoding another potential reductase. Recombinantly expressed and purified MSMEG_6753 exhibits ketoacyl reductase activity in the presence of acetoacetyl-CoA and NADPH. This activity was subsequently confirmed by functional complementation studies in a fabG thermosensitive Escherichia coli mutant. Furthermore, comparison of the apo and the NADP+-bound MSMEG_6753 crystal structures showed that cofactor binding induces a closed conformation of the protein. A ΔMSMEG_6753 deletion mutant could be generated in M. smegmatis, indicating that this gene is dispensable for mycobacterial growth. Overall, these results showcase the diversity of FabG-like proteins in mycobacteria and new structural features regarding the catalytic mechanism of this important family of enzymes that may be of importance for the rational design of specific FabG inhibitors.
Collapse
|
10
|
The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep 2016; 6:34827. [PMID: 27698396 PMCID: PMC5048167 DOI: 10.1038/srep34827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022] Open
Abstract
Macrophage-mediated innate immune responses play crucial roles in host defense against pathogens. Recent years have seen an explosion of host proteins that act as restriction factors blocking viral replication in infected cells. However, the essential factors restricting Mycobacterium tuberculosis (Mtb) and their regulatory roles during mycobacterial infection remain largely unknown. We previously reported that Mtb tyrosine phosphatase PtpA, a secreted effector protein required for intracellular survival of Mtb, inhibits innate immunity by co-opting the host ubiquitin system. Here, we identified a new PtpA-interacting host protein TRIM27, which is reported to possess a conserved RING domain and usually acts as an E3 ubiquitin ligase that interferes with various cellular processes. We further demonstrated that TRIM27 restricts survival of mycobacteria in macrophages by promoting innate immune responses and cell apoptosis. Interestingly, Mtb PtpA could antagonize TRIM27-promoted JNK/p38 MAPK pathway activation and cell apoptosis through competitively binding to the RING domain of TRIM27. TRIM27 probably works as a potential restriction factor for Mtb and its function is counteracted by Mtb effector proteins such as PtpA. Our study suggests a potential tuberculosis treatment via targeting of the TRIM27-PtpA interfaces.
Collapse
|
11
|
Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol 2016; 238:241-251. [PMID: 27681379 DOI: 10.1016/j.ijfoodmicro.2016.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/01/2022]
Abstract
Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing.
Collapse
Affiliation(s)
- Kai Xia
- Department of Biochemical Engineering, School of Food Science and Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China
| | - Ning Zang
- Medical Scientific Research Center, Guangxi Medical University, Nanning 530021, China
| | - Junmei Zhang
- Department of Biochemical Engineering, School of Food Science and Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China
| | - Hong Zhang
- Department of Biochemical Engineering, School of Food Science and Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China
| | - Yudong Li
- Department of Biochemical Engineering, School of Food Science and Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China
| | - Ye Liu
- Zhejiang Wuweihe Food Co. Ltd., Huzhou 313213, China
| | - Wei Feng
- Zhejiang Wuweihe Food Co. Ltd., Huzhou 313213, China
| | - Xinle Liang
- Department of Biochemical Engineering, School of Food Science and Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China.
| |
Collapse
|