1
|
Feinstein P. Rapid Degradation of the Human ACE2 Receptor Upon Binding and Internalization of SARS-Cov-2-Spike-RBD Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583884. [PMID: 38496410 PMCID: PMC10942428 DOI: 10.1101/2024.03.07.583884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
It is widely accepted that the SARS-CoV-2 betacoronavirus infects humans through binding the human Angiotensin Receptor 2 (ACE2) that lines the nasal cavity and lungs, followed by import into a cell utilizing the Transmembrane Protease, Serine 2 (TMPRSS2) cofactor. ACE2 binding is mediated by an approximately 200-residue portion of the SARS-CoV-2 extracellular spike protein, the receptor binding domain (RBD). Robust interactions are shown using a novel cell-based assay between an RBD membrane tethered-GFP fusion protein and the membrane bound ACE2-Cherry fusion protein. Several observations were not predicted including, quick and sustained interactions leading to internalization of RBD fusion protein into the ACE2 cells and rapid downregulation of the ACE2-Cherry fluorescence. Targeted mutation in the RBD disulfide Loop 4 led to a loss of internalization for several variants tested. However, a secreted RBD did not cause ACE2 downregulation of ACE2-Cherry fluorescence. Thus, the membrane associated form of RBD found on the viral coat may have long-term system wide consequences on ACE2 expressing cells.
Collapse
Affiliation(s)
- Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave, New York, NY 10016
| |
Collapse
|
2
|
Rubira RJG, Batista VRG, Correia RR, Pazin WM, Maximino MD, Ruiz GCM, Teixeira GR, Job AE. Biological responses to imazapic and methyl parathion pesticides in bioinspired lipid membranes and Tilapia fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131943. [PMID: 37390683 DOI: 10.1016/j.jhazmat.2023.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Pesticide misuse has well-documented detrimental effects on ecosystems, with Nile tilapia (Oreochromis niloticus) being particularly vulnerable. The current study focuses on the impact of widely used sugarcane crop pesticides, Imazapic (IMZ) and Methyl Parathion (MP), on tilapia gill tissues and their lipid membranes. This investigation was motivated by the specific role of the lipid membrane in transport regulation. Bioinspired cell membrane models, including Langmuir monolayers and liposomes (LUVs and GUVs), were utilized to explore the interaction of IMZ and MP. The results revealed electrostatic interactions between IMZ and MP and the polar head groups of lipids, inducing morphological alterations in the lipid bilayer. Tilapia gill tissue exposed to the pesticides exhibited hypertrophic increases in primary and secondary lamellae, total lamellar fusion, vasodilation, and lifting of the secondary lamellar epithelium. These alterations can lead to compromised oxygen absorption by fish and subsequent mortality. This study not only highlights the harmful effects of the pesticides IMZ and MP, but also emphasizes the crucial role of water quality in ecosystem well-being, even at minimal pesticide concentrations. Understanding these impacts can better inform management practices to safeguard aquatic organisms and preserve ecosystem health in pesticide-affected environments.
Collapse
Affiliation(s)
- Rafael J G Rubira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil.
| | - Victor R G Batista
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Rafael R Correia
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Wallance M Pazin
- São Paulo State University (Unesp), School of Sciences, Bauru, SP CEP 17033-360, Brazil
| | - Mateus D Maximino
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Gilia C M Ruiz
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Giovana R Teixeira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Aldo E Job
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| |
Collapse
|
3
|
Expression pattern and clinical significance of beta 2-adrenergic receptor in oral squamous cell carcinoma: an emerging prognostic indicator and future therapeutic target. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2191-2199. [PMID: 35918593 DOI: 10.1007/s12094-022-02879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/17/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE Beta 2-Adrenergic Receptor (β2-AR) is significantly overexpressed in various types of malignancies, which is associated with the worst prognosis. However, the role of β2-AR in oral cancer is not well identified. The present study aimed at investigating the β2-AR gene expression and its significance in relation with the clinicopathological features and overall survival of oral squamous cell carcinoma (OSCC) patients. METHODS Immunohistochemistry, western blot and quantitative real-time PCR techniques were used to analyze β2-AR protein and mRNA levels in a total of 65 histopathologically confirmed OSCC tissues (case group) and 65 normal tissues (control group) from the oral cavity. RESULTS Out of the total of 65 OSCC tissues, 41 tissues (63.1%) exhibited high expression for β2-AR protein. Percent positivity and relative density (mean ± SD) of protein were higher in the case group as compared to the control group (positivity 40.31 ± 3.01 vs. 20.46 ± 1.93, p < 0.001; density 2.77 ± 1.17 vs. 1.28 ± 0.37, p < 0.001). In addition, β2-AR mRNA level was also upregulated in patients compared to the controls (2.36 ± 1.30 vs. 1.09 ± 0.42, p < 0.001) and showed a positive correlation with immunostaining of protein in OSCC (r = 0.48, p = 0.011). High β2-AR protein expression was significantly associated with multiple risk habits (p = 0.045), histological differentiation (p = 0.013), clinical TNM stages (p = 0.014), and poor survival (p = 0.006) of patients. In the Cox proportional hazards model, β2-AR was identified as a prognostic biomarker of OSCC (p = 0.047). CONCLUSION β2-AR protein level is identified as an independent significant prognostic factor in patients with oral carcinoma.
Collapse
|
4
|
Ghosh S, de March CA, Branciamore S, Kaleem S, Matsunami H, Vaidehi N. Sequence coevolution and structure stabilization modulate olfactory receptor expression. Biophys J 2022; 121:830-840. [PMID: 35065915 PMCID: PMC8947990 DOI: 10.1016/j.bpj.2022.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Olfactory receptors (ORs) belong to class A G-protein coupled receptors (GPCRs) and are activated by a variety of odorants. To date, there is no three-dimensional structure of an OR available. One of the major bottlenecks in obtaining purified protein for structural studies of ORs is their poor expression in heterologous cells. To design mutants that enhance expression and thereby enable protein purification, we first identified computable physical properties that recapitulate OR and class A GPCR expression and further conducted an iterative computational prediction-experimental test cycle and generated human OR mutants that express as high as biogenic amine receptors for which structures have been solved. In the process of developing the computational method to recapitulate the expression of ORs in membranes, we identified properties, such as amino acid sequence coevolution, and the strength of the interactions between intracellular loop 1 (ICL1) and the helix 8 region of ORs, to enhance their heterologous expression. We identified mutations that are directly located in these regions as well as other mutations not located in these regions but allosterically strengthen the ICL1-helix 8 enhance expression. These mutants also showed functional responses to known odorants. This method to enhance heterologous expression of mammalian ORs will facilitate high-throughput "deorphanization" of ORs, and enable OR purification for biochemical and structural studies to understand odorant-OR interactions.
Collapse
Affiliation(s)
- Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Sahar Kaleem
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
5
|
Sun M, Bao W, Huang C, Xia Z, Zhang C, Wang G, Wang R, Li J, Roux S, Li Q, Zou D, Ma K, Bao X. A Novel Probiotic Formula, BIOCG, Protects Against Alzheimer's-Related Cognitive Deficits via Regulation of Dendritic Spine Dynamics. Curr Alzheimer Res 2021; 18:558-572. [PMID: 34674621 DOI: 10.2174/1567205018666211022091110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain-gut-microbiome axis has emerged as an important pathway through which perturbations in the gut and/or microbial microenvironment can impact neurological function. Such alterations have been implicated in a variety of neuropsychiatric disorders, includ- ing depression, anxiety, and Alzheimer's Disease (AD) and the use of probiotics as therapy for th- ese diseases remains promising. However, the mechanisms underlying the gut microenvironment's influence on disease pathogenesis and therapy remain unclear. OBJECTIVE The objective of this study is to investigate the effect of a novel probiotic formula, BIOCG, on cognitive function and pathobiological mechanisms, including amyloid processing and dendritic spine dynamics, in a mouse model of AD. METHODS BIOCG was administered for 3 months to 3xTg or 3xTg; Thy1-YFP AD mice and func- tional outcomes were assessed via behavioral testing and electrophysiology. Mechanisms relevant to AD pathogenesis including dendritic spine morphology and turnover, Amyloid Precursor Pro- tein (APP) processing and microglial phenotype were also evaluated. Finally, we sequenced fecal samples following probiotic treatment to assess the impact on gut microbial composition and corre- late the changes with the above described measures. RESULTS Mice treated with BIOCG demonstrated preserved cognitive abilities and stronger Long- Term Potentiation (LTP), spontaneous Excitatory Postsynaptic Currents (sEPSC), and glutamate-in- duced LTPs, indicative of functional and electrophysiological effects. Moreover, we observed atten- uated AD pathogenesis, including reduced Amyloid Beta (Aβ) burden, as well as more mature den- dritic spines in the BIOCG-treated. Our finding of changes in microglial number and phenotype in the treatment group suggests that this formulation may mediate its effects via attenuation of neu- roinflammation. Sequencing data confirmed that the gut microbiome in treated mice was more varied and harbored a greater proportion of "beneficial" bacteria. CONCLUSION Overall, our results indicate that treatment with BIOCG enhances microbial diversity and, through gut-brain axis interactions, attenuates neuroinflammation to produce histologic and functional improvement in AD pathogenesis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Wenchenyang Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Chengyu Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Ziyue Xia
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Guangxian Wang
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Runxin Wang
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Jiangyu Li
- Admera Health, South Plainfield, NJ07080. United States
| | - Shaun Roux
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208. Australia
| | - Qian Li
- Department of biology, College of Staten Island, Staten Island, NY 10314 . United States
| | - Dongmei Zou
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Xiaofeng Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| |
Collapse
|
6
|
Ikegami K, de March CA, Nagai MH, Ghosh S, Do M, Sharma R, Bruguera ES, Lu YE, Fukutani Y, Vaidehi N, Yohda M, Matsunami H. Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. Proc Natl Acad Sci U S A 2020; 117:2957-2967. [PMID: 31974307 PMCID: PMC7022149 DOI: 10.1073/pnas.1915520117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mammalian odorant receptors are a diverse and rapidly evolving set of G protein-coupled receptors expressed in olfactory cilia membranes. Most odorant receptors show little to no cell surface expression in nonolfactory cells due to endoplasmic reticulum retention, which has slowed down biochemical studies. Here we provide evidence that structural instability and divergence from conserved residues of individual odorant receptors underlie intracellular retention using a combination of large-scale screening of odorant receptors cell surface expression in heterologous cells, point mutations, structural modeling, and machine learning techniques. We demonstrate the importance of conserved residues by synthesizing consensus odorant receptors that show high levels of cell surface expression similar to conventional G protein-coupled receptors. Furthermore, we associate in silico structural instability with poor cell surface expression using molecular dynamics simulations. We propose an enhanced evolutionary capacitance of olfactory sensory neurons that enable the functional expression of odorant receptors with cryptic mutations.
Collapse
Affiliation(s)
- Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Maira H Nagai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Biochemistry, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Matthew Do
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Elise S Bruguera
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Yueyang Eric Lu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Yosuke Fukutani
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710
| |
Collapse
|
7
|
Movahedi K, Grosmaitre X, Feinstein P. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms. Open Biol 2017; 6:rsob.160018. [PMID: 27466441 PMCID: PMC4967819 DOI: 10.1098/rsob.160018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 01/24/2023] Open
Abstract
Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production.
Collapse
Affiliation(s)
- Kiavash Movahedi
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany Myeloid Cell Immunology Laboratory, VIB Inflammation Research Center, Ghent, Belgium Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, CUNY, New York, NY, USA
| |
Collapse
|
8
|
Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien MS, You H, Chi Q, Kubota M, Yohda M, Ehlers M, Matsunami H. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. eLife 2017; 6. [PMID: 28262096 PMCID: PMC5362263 DOI: 10.7554/elife.21895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Yoshiro Ishimaru
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ian Davison
- Department of Biology, Boston University, Boston, United States
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Helena You
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Quiyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Momoka Kubota
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Masafumi Yohda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Biogen Inc, Cambridge, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Durham, United States
| |
Collapse
|
9
|
Bubnell J, Jamet S, Tomoiaga D, D’Hulst C, Krampis K, Feinstein P. In Vitro Mutational and Bioinformatics Analysis of the M71 Odorant Receptor and Its Superfamily. PLoS One 2015; 10:e0141712. [PMID: 26513476 PMCID: PMC4626375 DOI: 10.1371/journal.pone.0141712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/12/2015] [Indexed: 02/03/2023] Open
Abstract
We performed an extensive mutational analysis of the canonical mouse odorant receptor (OR) M71 to determine the properties of ORs that inhibit plasma membrane trafficking in heterologous expression systems. We employed the use of the M71::GFP fusion protein to directly assess plasma membrane localization and functionality of M71 in heterologous cells in vitro or in olfactory sensory neurons (OSNs) in vivo. OSN expression of M71::GFP show only small differences in activity compared to untagged M71. However, M71::GFP could not traffic to the plasma membrane even in the presence of proposed accessory proteins RTP1S or mβ2AR. To ask if ORs contain an internal "kill sequence", we mutated ~15 of the most highly conserved OR specific amino acids not found amongst the trafficking non-OR GPCR superfamily; none of these mutants rescued trafficking. Addition of various amino terminal signal sequences or different glycosylation motifs all failed to produce trafficking. The addition of the amino and carboxy terminal domains of mβ2AR or the mutation Y289A in the highly conserved GPCR motif NPxxY does not rescue plasma membrane trafficking. The failure of targeted mutagenesis on rescuing plasma membrane localization in heterologous cells suggests that OR trafficking deficits may not be attributable to conserved collinear motifs, but rather the overall amino acid composition of the OR family. Thus, we performed an in silico analysis comparing the OR and other amine receptor superfamilies. We find that ORs contain fewer charged residues and more hydrophobic residues distributed throughout the protein and a conserved overall amino acid composition. From our analysis, we surmise that it may be difficult to traffic ORs at high levels to the cell surface in vitro, without making significant amino acid modifications. Finally, we observed specific increases in methionine and histidine residues as well as a marked decrease in tryptophan residues, suggesting that these changes provide ORs with special characteristics needed for them to function in olfactory neurons.
Collapse
Affiliation(s)
- Jaclyn Bubnell
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Sophie Jamet
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Delia Tomoiaga
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Charlotte D’Hulst
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
- Director of Bioinformatics, Center for Translational and Basic Research, CUNY, New York, NY, United States of America
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
- The Graduate Center Biology Program, CUNY, New York, NY, United States of America
- The Graduate Center Behavioral and Cognitive Neuroscience Program, CUNY, New York, NY, United States of America
- * E-mail:
| |
Collapse
|