1
|
Jugder BE, Kamareddine L, Watnick PI. Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex. Immunity 2021; 54:1683-1697.e3. [PMID: 34107298 DOI: 10.1016/j.immuni.2021.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Badmos H, Cobbe N, Campbell A, Jackson R, Bennett D. Drosophila USP22/nonstop polarizes the actin cytoskeleton during collective border cell migration. J Cell Biol 2021; 220:212101. [PMID: 33988679 PMCID: PMC8129793 DOI: 10.1083/jcb.202007005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/06/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Polarization of the actin cytoskeleton is vital for the collective migration of cells in vivo. During invasive border cell migration in Drosophila, actin polarization is directly controlled by the Hippo signaling complex, which resides at contacts between border cells in the cluster. Here, we identify, in a genetic screen for deubiquitinating enzymes involved in border cell migration, an essential role for nonstop/USP22 in the expression of Hippo pathway components expanded and merlin. Loss of nonstop function consequently leads to a redistribution of F-actin and the polarity determinant Crumbs, loss of polarized actin protrusions, and tumbling of the border cell cluster. Nonstop is a component of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator complex, but SAGA’s histone acetyltransferase module, which does not bind to expanded or merlin, is dispensable for migration. Taken together, our results uncover novel roles for SAGA-independent nonstop/USP22 in collective cell migration, which may help guide studies in other systems where USP22 is necessary for cell motility and invasion.
Collapse
Affiliation(s)
- Hammed Badmos
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neville Cobbe
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amy Campbell
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Richard Jackson
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Daimark Bennett
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Torres-Zelada EF, Weake VM. The Gcn5 complexes in Drosophila as a model for metazoa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194610. [PMID: 32735945 DOI: 10.1016/j.bbagrm.2020.194610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/14/2023]
Abstract
The histone acetyltransferase Gcn5 is conserved throughout eukaryotes where it functions as part of large multi-subunit transcriptional coactivator complexes that stimulate gene expression. Here, we describe how studies in the model insect Drosophila melanogaster have provided insight into the essential roles played by Gcn5 in the development of multicellular organisms. We outline the composition and activity of the four different Gcn5 complexes in Drosophila: the Spt-Ada-Gcn5 Acetyltransferase (SAGA), Ada2a-containing (ATAC), Ada2/Gcn5/Ada3 transcription activator (ADA), and Chiffon Histone Acetyltransferase (CHAT) complexes. Whereas the SAGA and ADA complexes are also present in the yeast Saccharomyces cerevisiae, ATAC has only been identified in other metazoa such as humans, and the CHAT complex appears to be unique to insects. Each of these Gcn5 complexes is nucleated by unique Ada2 homologs or splice isoforms that share conserved N-terminal domains, and differ only in their C-terminal domains. We describe the common and specialized developmental functions of each Gcn5 complex based on phenotypic analysis of mutant flies. In addition, we outline how gene expression studies in mutant flies have shed light on the different biological roles of each complex. Together, these studies highlight the key role that Drosophila has played in understanding the expanded biological function of Gcn5 in multicellular eukaryotes.
Collapse
Affiliation(s)
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
The function of Drosophila larval class IV dendritic arborization sensory neurons in the larval-pupal transition is separable from their function in mechanical nociception responses. PLoS One 2017; 12:e0184950. [PMID: 28910410 PMCID: PMC5599056 DOI: 10.1371/journal.pone.0184950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
The sensory and physiological inputs which govern the larval-pupal transition in Drosophila, and the neuronal circuity that integrates them, are complex. Previous work from our laboratory identified a dosage-sensitive genetic interaction between the genes encoding the Rho-GEF Trio and the zinc-finger transcription factor Sequoia that interfered with the larval-pupal transition. Specifically, we reported heterozygous mutations in sequoia (seq) dominantly exacerbated the trio mutant phenotype, and this seq-enhanced trio mutant genotype blocked the transition of third instar larvae from foragers to wanderers, a requisite behavioral transition prior to pupation. In this work, we use the GAL4-UAS system to rescue this phenotype by tissue-specific trio expression. We find that expressing trio in the class IV dendritic arborization (da) sensory neurons rescues the larval-pupal transition, demonstrating the reliance of the larval-pupal transition on the integrity of these sensory neurons. As nociceptive responses also rely on the functionality of the class IV da neurons, we test mechanical nociceptive responses in our mutant and rescued larvae and find that mechanical nociception is separable from the ability to undergo the larval-pupal transition. This demonstrates for the first time that the roles of the class IV da neurons in governing two critical larval behaviors, the larval-pupal transition and mechanical nociception, are functionally separable from each other.
Collapse
|
5
|
Li X, Seidel CW, Szerszen LT, Lange JJ, Workman JL, Abmayr SM. Enzymatic modules of the SAGA chromatin-modifying complex play distinct roles in Drosophila gene expression and development. Genes Dev 2017; 31:1588-1600. [PMID: 28887412 PMCID: PMC5630023 DOI: 10.1101/gad.300988.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
Abstract
In this study, Li et al. demonstrate that the two enzymatic modules of the Drosophila Spt–Ada–Gcn5–acetyltransferase (SAGA) chromatin-modifying complex are differently required in oogenesis. Their findings demonstrate that loss of the histone acetyltransferase (HAT) activity blocks oogenesis, while loss of H2B deubiquitinase (DUB) activity does not, suggesting that the DUB module has functions within SAGA as well as independent functions. The Spt–Ada–Gcn5–acetyltransferase (SAGA) chromatin-modifying complex is a transcriptional coactivator that contains four different modules of subunits. The intact SAGA complex has been well characterized for its function in transcription regulation and development. However, little is known about the roles of individual modules within SAGA and whether they have any SAGA-independent functions. Here we demonstrate that the two enzymatic modules of Drosophila SAGA are differently required in oogenesis. Loss of the histone acetyltransferase (HAT) activity blocks oogenesis, while loss of the H2B deubiquitinase (DUB) activity does not. However, the DUB module regulates a subset of genes in early embryogenesis, and loss of the DUB subunits causes defects in embryogenesis. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that both the DUB and HAT modules bind most SAGA target genes even though many of these targets do not require the DUB module for expression. Furthermore, we found that the DUB module can bind to chromatin and regulate transcription independently of the HAT module. Our results suggest that the DUB module has functions within SAGA and independent functions.
Collapse
Affiliation(s)
- Xuanying Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | - Leanne T Szerszen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
6
|
Pahi Z, Borsos BN, Vedelek B, Shidlovskii YV, Georgieva SG, Boros IM, Pankotai T. TAF10 and TAF10b partially redundant roles during Drosophila melanogaster morphogenesis. Transcription 2017; 8:297-306. [PMID: 28841365 DOI: 10.1080/21541264.2017.1327836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Transcription of eukaryotic genes requires the cooperative action of the RNA polymerase complex, the general transcription factors (TFIIB, TFIID, TFIIE, TFIIF and TFIIH) and chromatin modifiers. The TFIID complex contributes to transcriptional activation by several mechanisms and has a subunit with associated histone acetyltransferase (HAT) activity. The histone modifier SAGA complex has both HAT and deubiquitylase (DUB) activities. TFIID and SAGA share several TBP-associated factors (TAFs), but not their HAT subunit. Recently, several duplicated TAF proteins have been identified in higher eukaryotes, but their functional diversity has been so far poorly characterized. Here, we report the functional similarities and differences of TAF10 and TAF10b, the two TAF10 orthologs of Drosophila melanogaster. Results from in silico modeling suggest that dTAF10 and dTAF10b have similar secondary structures characterized by the presence of a histone-fold domain. Additionally, dTAF10 and dTAF10b share interaction partners and show similar expression patterns in neuronal tissues. Nonetheless, dTAF10 and dTAF10b seem to have partly distinct functions. To investigate their roles, we generated dTaf10-dTaf10b double-mutants and rescued the mutant flies with transgenes, which allowed the translation of either dTAF10 or dTAF10b protein. We found that the loss of dTAF10b resulted in pupal lethality, while animals lacking dTAF10 were able to form puparium. dTaf10 mutant adults showed distorted eye morphology. During DNA repair, dTAF10 and dTAF10b act redundantly, suggesting that these proteins have distinct but partially overlapping functions.
Collapse
Affiliation(s)
- Z Pahi
- a Department of Biochemistry and Molecular Biology , University of Szeged , Szeged , Hungary
| | - B N Borsos
- a Department of Biochemistry and Molecular Biology , University of Szeged , Szeged , Hungary
| | - B Vedelek
- a Department of Biochemistry and Molecular Biology , University of Szeged , Szeged , Hungary
| | - Y V Shidlovskii
- b Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - S G Georgieva
- b Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - I M Boros
- a Department of Biochemistry and Molecular Biology , University of Szeged , Szeged , Hungary.,c Institute of Biochemistry, Biological Research Center , Szeged , Hungary
| | - T Pankotai
- a Department of Biochemistry and Molecular Biology , University of Szeged , Szeged , Hungary
| |
Collapse
|