1
|
Chang HH, Wu SB, Tsai CC. A Review of Pathophysiology and Therapeutic Strategies Targeting TGF-β in Graves' Ophthalmopathy. Cells 2024; 13:1493. [PMID: 39273063 PMCID: PMC11393989 DOI: 10.3390/cells13171493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
TGF-β plays a pivotal role in the pathogenesis of GO by promoting orbital tissue remodeling and fibrosis. This process involves the stimulation of orbital fibroblasts, leading to myofibroblast differentiation, increased production of inflammatory mediators, and hyaluronan accumulation. Studies have elucidated TGF-β's role in driving fibrosis and scarring processes through both canonical and non-canonical pathways, particularly resulting in the activation of orbital myofibroblasts and the excessive accumulation of extracellular matrix. Additionally, recent in vitro and in vivo studies have been summarized, highlighting the therapeutic potential of targeting TGF-β signaling pathways, which may offer promising treatment interventions for GO. This review aims to consolidate the current understanding of the multifaceted role of TGF-β in the molecular and cellular pathophysiology in Graves' ophthalmopathy (GO) by exploring its contributions to fibrosis, inflammation, and immune dysregulation. Additionally, the review investigates the therapeutic potential of inhibiting TGF-β signaling pathways as a strategy for treating GO.
Collapse
Affiliation(s)
- Hsin-Ho Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shi-Bei Wu
- Office of Business Development, Technology Commercialization Center, Taipei Medical University, Taipei 110, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
2
|
Yang F, Wendusubilige, Kong J, Zong Y, Wang M, Jing C, Ma Z, Li W, Cao R, Jing S, Gao J, Li W, Wang J. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA J 2023; 14:417-442. [PMID: 37605652 PMCID: PMC10439879 DOI: 10.1007/s13167-023-00334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00334-4.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wendusubilige
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqing Jing
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, China
| | - Renshuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuwen Jing
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R. Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering. Exp Biol Med (Maywood) 2023; 248:1425-1436. [PMID: 37873757 PMCID: PMC10657592 DOI: 10.1177/15353702231199466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
Collapse
Affiliation(s)
| | - Norhafiza Razali
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Amy Suzana Abu Bakar
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Noor Fahitah Abu Hanipah
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University (IMU), 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Vallabh NA, Armstrong J, Czanner G, McDonagh B, Choudhary A, Criddle DN, Willoughby CE. Evidence of impaired mitochondrial cellular bioenergetics in ocular fibroblasts derived from glaucoma patients. Free Radic Biol Med 2022; 189:102-110. [PMID: 35872337 DOI: 10.1016/j.freeradbiomed.2022.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration of the retinal ganglion cells (RGCs) resulting in irreversible visual impairment and eventual blindness. RGCs are extremely susceptible to mitochondrial compromise due to their marked bioenergetic requirements and morphology. There is increasing interest in therapies targeting mitochondrial health as a method of preventing visual loss in managing glaucoma. The bioenergetic profile of Tenon's ocular fibroblasts from glaucoma patients and controls was investigated using the Seahorse XF24 analyser. Impaired mitochondrial cellular bioenergetics was detected in glaucomatous ocular fibroblasts including basal respiration, maximal respiration and spare capacity. Spare respiratory capacity levels reflect mitochondrial bio-energetic adaptability in response to pathophysiological stress. Basal oxidative stress was elevated in glaucomatous Tenon's ocular fibroblasts and hydrogen peroxide (H2O2) induced reactive oxygen species (ROS) simulated the glaucomatous condition in normal Tenon's ocular fibroblasts. This work supports the role of therapeutic interventions to target oxidative stress or provide mitochondrial energetic support in glaucoma.
Collapse
Affiliation(s)
- Neeru A Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom; St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, United Kingdom
| | - Jane Armstrong
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Gabriela Czanner
- School of Computer Science and Mathematics, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom; Faculty of Informatics and Information Technology, Slovak University of Technology, 842 16, Bratislava, Slovakia
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Anshoo Choudhary
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, United Kingdom
| | - David N Criddle
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Colin E Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom; Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, United Kingdom.
| |
Collapse
|
5
|
Study of matrix metalloproteinase activity in patients with autoimmune thyroiditis. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One of the most important pathogenetic mechanisms of autoimmune thyroiditis (AIT) is the violation of immunological tolerance and the development of the autoimmune process, the markers of which are various biologically active substances, in particular, matrix metalloproteinases (MMP) of the extracellular matrix (ECM). MMPs play a crucial role in the development of pathological processes in these diseases, contributing to matrix degradation due to imbalance between the activity of enzymes and their inhibitors. The aim of the work was to study the activity of key metalloproteinases and the level of α2-macroglobulin in patients with autoimmune thyroiditis. The diagnosis of AIT was established based on the study of data on anamnesis, thyroid status, the results of ultrasound of TG, and the presence of antibodies to the thyroid-stimulating hormone receptor (TSH) in blood plasma. Patients were enrolled in 2 groups: group 1 – 74 patients with a manifest form of the disease; group 2 – 96 patients with a subclinical form of the disease. The study of matrix metalloprotein activity in the examined patients showed a statistically significant (P = 0.015) increase in MMP-3 and MMP-7 activity in patients with AIT compared to the corresponding parameters in persons of the control group. Thus, levels of MMP-3 and 7 were in the group of patients, respectively 56 (51.0; 59.0) and 4.6 (4.3; 5.2) ng/ml, in control 23.0 (16.0; 26.0) and 3.6 (3.4; 4.1) ng/ml, respectively.
Collapse
|
6
|
Rahimova RR. Autoimmune thyroiditis (review of literature). Klin Lab Diagn 2022; 67:286-291. [PMID: 35613347 DOI: 10.51620/0869-2084-2022-67-5-286-291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autoimmune thyroiditis is a group of organ-specific autoimmune thyropathies, which are caused by a genetically determined defect in immune tolerance to thyroid antigens, as a result of which its autoimmune damage occurs. The aim of the study was to analyze literature data on the pathogenetic role of genetic and biochemical parameters in patients with autoimmune thyroiditis.
Collapse
|
7
|
Giordo R, Thuan DTB, Posadino AM, Cossu A, Zinellu A, Erre GL, Pintus G. Iloprost Attenuates Oxidative Stress-Dependent Activation of Collagen Synthesis Induced by Sera from Scleroderma Patients in Human Pulmonary Microvascular Endothelial Cells. Molecules 2021; 26:4729. [PMID: 34443317 PMCID: PMC8399120 DOI: 10.3390/molecules26164729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell injury is an early event in systemic sclerosis (SSc) pathogenesis and several studies indicate oxidative stress as the trigger of SSc-associated vasculopathy. Here, we show that circulating factors present in sera of SSc patients increased reactive oxygen species (ROS) production and collagen synthesis in human pulmonary microvascular endothelial cells (HPMECs). In addition, the possibility that iloprost, a drug commonly used in SSc therapy, might modulate the above-mentioned biological phenomena has been also investigated. In this regard, as compared to sera of SSc patients, sera of iloprost-treated SSc patients failed to increased ROS levels and collagen synthesis in HPMEC, suggesting a potential antioxidant mechanism of this drug.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| | - Duong Thi Bich Thuan
- Faculty of Biochemistry, College of Health Sciences, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi 132002, Vietnam;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
Yu WK, Hwang WL, Wang YC, Tsai CC, Wei YH. Curcumin Suppresses TGF-β1-Induced Myofibroblast Differentiation and Attenuates Angiogenic Activity of Orbital Fibroblasts. Int J Mol Sci 2021; 22:ijms22136829. [PMID: 34202024 PMCID: PMC8268269 DOI: 10.3390/ijms22136829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Orbital fibrosis, a hallmark of tissue remodeling in Graves’ ophthalmopathy (GO), is a chronic, progressive orbitopathy with few effective treatments. Orbital fibroblasts are effector cells, and transforming growth factor β1 (TGF-β1) acts as a critical inducer to promote myofibroblast differentiation and subsequent tissue fibrosis. Curcumin is a natural compound with anti-fibrotic activity. This study aims to investigate the effects of curcumin on TGF-β1-induced myofibroblast differentiation and on the pro-angiogenic activities of orbital fibroblasts. Orbital fibroblasts from one healthy donor and three patients with GO were collected for primary cell culture and subjected to myofibroblast differentiation under the administration of 1 or 5 ng/mL TGF-β1 for 24 h. The effects of curcumin on TGF-β1-induced orbital fibroblasts were assessed by measuring the cellular viability and detecting the expression of myofibroblast differentiation markers, including connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA). The pro-angiogenic potential of curcumin-treated orbital fibroblasts was evaluated by examining the transwell migration and tube-forming capacities of fibroblast-conditioned EA.hy926 and HMEC-1 endothelial cells. Treatment of orbital fibroblasts with curcumin inhibited the TGF-β1 signaling pathway and attenuated the expression of CTGF and α-SMA induced by TGF-β1. Curcumin, at the concentration of 5 μg/mL, suppressed 5 ng/mL TGF-β1-induced pro-angiogenic activities of orbital fibroblast-conditioned EA hy926 and HMEC-1 endothelial cells. Our findings suggest that curcumin reduces the TGF-β1-induced myofibroblast differentiation and pro-angiogenic activity in orbital fibroblasts. The results support the potential application of curcumin for the treatment of GO.
Collapse
Affiliation(s)
- Wei-Kuang Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-L.H.); (Y.-C.W.)
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Chuan Wang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-L.H.); (Y.-C.W.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: (C.-C.T.); (Y.-H.W.)
| | - Yau-Huei Wei
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
- Correspondence: (C.-C.T.); (Y.-H.W.)
| |
Collapse
|
9
|
Thankam FG, Larsen NK, Varghese A, Bui TN, Reilly M, Fitzgibbons RJ, Agrawal DK. Biomarkers and heterogeneous fibroblast phenotype associated with incisional hernia. Mol Cell Biochem 2021; 476:3353-3363. [PMID: 33942219 DOI: 10.1007/s11010-021-04166-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
Development of incisional hernia (IH) is multifactorial but inflammation and abdominal wall ECM (extracellular matrix) disorganization are key pathological events. We investigated if the differential expression of fibroblast biomarkers reflects the cellular milieu and the dysregulated ECM in IH tissues. Expression of fibroblast biomarkers, including connective tissue growth factor, alpha-smooth muscle actin (α-SMA), CD34 (cluster of differentiation 34), cadherin-11 and fibroblast specific protein 1 (FSP1), was examined by histology and immunofluorescence in the hernial-fascial ring/neck tissue (HRT) and hernia sack tissue (HST) harvested from the patients undergoing hernia surgery and compared with normal fascia (FT) and peritoneum (PT) harvested from brain-dead healthy subjects undergoing organ procurement for transplantation. The H&E staining revealed alterations in tissue architecture, fibroblast morphology, and ECM organization in the IH tissues compared to control. The biomarker for undifferentiated fibroblasts, CD34, was significantly higher in HST and decreased in HRT than the respective FT and PT controls. Also, the findings revealed an increased level of CTGF (connective tissue growth factor) with decrease in α-SMA in both HRT and HST compared to the controls. In addition, an increased level of FSP1 (fibroblast specific protein 1) and cadherin-11 in HRT with decreased level in HST were observed relative to the respective controls (FT and PT). Hence, these findings support the heterogeneity of fibroblast population at the laparotomy site that could contribute to the development of IH. Understanding the mechanisms causing the phenotype switch of these fibroblasts would open novel strategies to prevent the development of IH following laparotomy.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Nicholas K Larsen
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Ann Varghese
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Thao-Nguyen Bui
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Matthew Reilly
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Robert J Fitzgibbons
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
- Departments of Clinical & Translational Science and Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| |
Collapse
|
10
|
JNK and p38 Inhibitors Prevent Transforming Growth Factor-β1-Induced Myofibroblast Transdifferentiation in Human Graves' Orbital Fibroblasts. Int J Mol Sci 2021; 22:ijms22062952. [PMID: 33799469 PMCID: PMC7998969 DOI: 10.3390/ijms22062952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.
Collapse
|
11
|
Hao M, Sun J, Zhang Y, Zhang D, Han J, Zhang J, Qiao H. Exploring the Role of SRC in Extraocular Muscle Fibrosis of the Graves' Ophthalmopathy. Front Bioeng Biotechnol 2020; 8:392. [PMID: 32457885 PMCID: PMC7225279 DOI: 10.3389/fbioe.2020.00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
The Graves’ disease is an autoimmune disease highly associated with thyroid cancer. The Graves’ ophthalmopathy (GO) is a special Graves’ disease with inflammatory ophthalmopathy being a typical extrathymic complication. GO is caused by the formation of orbital fat and extraocular muscle fibrosis due to the inflammation of orbital connective tissues. Thus, controlling extraocular muscle fibrosis is critical for the prognosis of GO. The objective of this study is to identify and experimentally validate key genes associated with GO and explore their potential function mechanisms especially on extraocular muscle fibrosis. Specifically, we first created a GO mouse model, and performed RNA sequencing on the extraocular muscles of fibrotic GO mice and controls. SRC was identified as the most significant unstudied differentially expressed gene between GO mice and controls. Thus, we conducted a few in vitro analyses to explore the roles and functions of SRC in GO, for which we selected primary cultured orbital fibroblast (OF) as the in vitro cell line model. It is known that myofibroblast (MFB), which expresses α-SMA, is an important target cell in the process of fibrosis. Our experiment suggests that TGF-β can induce the transformation from OF to MFB, however, the transformation was inhibited by silencing the SRC gene in OF. In addition, we also inhibited TGF-β/Smad, NF-κB, and PI3K/Akt signaling pathways to analyze the interaction between these pathways and SRC. In conclusion, the silence of SRC in OF can inhibit the transformation from OF to MFB, which might be associated with the interaction between SRC and a few pathways such as TGF-β/Smad, NF-κB, and PI3K/Akt.
Collapse
Affiliation(s)
- Mingyu Hao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxue Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaguang Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dexin Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Han
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jirong Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Longo CM, Higgins PJ. Molecular biomarkers of Graves' ophthalmopathy. Exp Mol Pathol 2018; 106:1-6. [PMID: 30414981 DOI: 10.1016/j.yexmp.2018.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/15/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
Graves' ophthalmopathy (GO), a complication of Graves' disease (GD), is typified by orbital inflammation, ocular tissue expansion and remodeling and, ultimately, fibrosis. Orbital fibroblasts are key effectors of GO pathogenesis exhibiting exaggerated inflammatory and fibroproliferative responses to cytokines released by infiltrating immune cells. Activated orbital fibroblasts also produce inflammatory mediators that contribute to disease progression, facilitate the orbital trafficking of monocytes and macrophages, promote differentiation of matrix-producing myofibroblasts and stimulate accumulation of a hyaluronan-rich stroma, which leads to orbital tissue edema and fibrosis. Proteomic and transcriptome profiling of the genomic response of ocular and non-ocular fibroblasts to INF-γ and TGF-β1 focused on identification of translationally-relevant therapeutic candidates. Induction of plasminogen activator inhibitor-1 (PAI-1, SERPINE1), a clade E member of the serine protease inhibitor (SERPIN) gene family and a prominent regulator of the pericellular proteolytic microenvironment, was one of the most highly up-regulated proteins in INF-γ- or TGF-β1-stimulated GO fibroblasts as well as in severe active GD compared to patients without thyroid disease. PAI-1 has multifunctional roles in inflammatory and fibrotic processes that impact tissue remodeling, immune cell trafficking and survival as well as signaling through several receptor systems. This review focuses on the pathophysiology of the GO fibroblast and possible targets for effective drug therapy.
Collapse
Affiliation(s)
- Christine M Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York 12208, United States
| | - Paul J Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York 12208, United States.
| |
Collapse
|
13
|
Tsai CC, Wu SB, Kau HC, Wei YH. Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves' orbital fibroblasts. Sci Rep 2018; 8:7276. [PMID: 29739987 PMCID: PMC5940888 DOI: 10.1038/s41598-018-25370-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
Connective tissue growth factor (CTGF) associated with transforming growth factor-β (TGF-β) play a pivotal role in the pathophysiology of many fibrotic disorders. However, it is not clear whether this interaction also takes place in GO. In this study, we investigated the role of CTGF in TGF-β-induced extracellular matrix production and myofibroblast transdifferentiation in Graves’ orbital fibroblasts. By Western blot analysis, we demonstrated that TGF-β1 induced the expression of CTGF, fibronectin, and alpha-smooth muscle actin (α-SMA) in Graves’ orbital fibroblasts. In addition, the protein levels of fibronectin and α-SMA in Graves’ orbital fibroblasts were also increased after treatment with a recombinant human protein CTGF (rhCTGF). Moreover, we transfected the orbital fibroblasts with a small hairpin RNA of CTGF gene (shCTGF) to knockdown the expression levels of CTGF, which showed that knockdown of CTGF significantly diminished TGF-β1-induced expression of CTGF, fibronectin and α-SMA proteins in Graves’ orbital fibroblasts. Furthermore, the addition of rhCTGF to the shCTGF-transfected orbital fibroblasts could restore TGF-β1-induced expression of fibronectin and α-SMA proteins. Our findings demonstrate that CTGF is an essential downstream mediator for TGF-β1-induced extracellular matrix production and myofibroblast transdifferentiation in Graves’ orbital fibroblasts and thus may provide with a potential therapeutic target for treatment of GO.
Collapse
Affiliation(s)
- Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.
| | - Shi-Bei Wu
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chuan Kau
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.,Department of Ophthalmology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| |
Collapse
|
14
|
Maezawa T, Tanaka M, Kanazashi M, Maeshige N, Kondo H, Ishihara A, Fujino H. Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress. J Physiol Sci 2017; 67:603-611. [PMID: 27714500 PMCID: PMC10718026 DOI: 10.1007/s12576-016-0492-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Immobilization induces skeletal muscle fibrosis characterized by increasing collagen synthesis in the perimysium and endomysium. Transforming growth factor-β1 (TGF-β1) is associated with this lesion via promoting differentiation of fibroblasts into myofibroblasts. In addition, reactive oxygen species (ROS) are shown to mediate TGF-β1-induced fibrosis in tissues. These reports suggest the importance of ROS reduction for attenuating skeletal muscle fibrosis. Astaxanthin, a powerful antioxidant, has been shown to reduce ROS production in disused muscle. Therefore, we investigated the effects of astaxanthin supplementation on muscle fibrosis under immobilization. In the present study, immobilization increased the collagen fiber area, the expression levels of TGF-β1, α-smooth muscle actin, and superoxide dismutase-1 protein and ROS production. However, these changes induced by immobilization were attenuated by astaxanthin supplementation. These results indicate the effectiveness of astaxanthin supplementation on skeletal muscle fibrosis induced by ankle joint immobilization.
Collapse
Affiliation(s)
- Toshiyuki Maezawa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, 4-21 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi, 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan.
| |
Collapse
|
15
|
Huang YM, Chang PC, Wu SB, Kau HC, Tsai CC, Liu CJL, Wei YH. Expression and clinical significance of connective tissue growth factor (CTGF) in Graves' ophthalmopathy. Br J Ophthalmol 2016; 101:676-680. [PMID: 27543288 DOI: 10.1136/bjophthalmol-2016-308713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/18/2016] [Accepted: 07/30/2016] [Indexed: 12/29/2022]
Abstract
AIMS To examine the expression of connective tissue growth factor (CTGF) in human cultured orbital fibroblasts from patients with Graves' ophthalmopathy (GO) and investigate whether a correlation exists between the presence of CTGF protein and clinical parameters of the disease. METHODS The protein expression levels of CTGF were analysed by western blots in cultured orbital fibroblasts from 10 patients with GO and 7 age-matched normal controls. Associations between the protein expression of CTGF and the clinical factors of GO, including clinical demographics, thyroid function, clinical activity score (CAS) and ophthalmopathy index (OI), was evaluated. RESULTS The mean protein expression levels of CTGF in the GO orbital fibroblasts were significantly higher than those of normal controls (p<0.001). Based on further analysis, the protein expression levels of CTGF in the GO orbital fibroblasts had significant correlation with gender (p=0.029), serum levels of thyrotropin receptor antibodies (p=0.029), CAS (p=0.048) and OI (p=0.043). Especially, there was a significant correlation between protein expression levels of CTGF and lid oedema (p=0.037), proptosis (p=0.045) and corneal involvement (p=0.001). CONCLUSIONS Our findings revealed that the protein expression levels of CTGF in the GO orbital fibroblasts were significantly highly expressed than those of normal controls, and the elevated CTGF was associated with clinical characteristics and evolution, indicating CTGF may play a role in the pathogenesis and pathophysiology of GO.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chen Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Bei Wu
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Chuan Kau
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.,Department of Ophthalmology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Catherine Jui-Ling Liu
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Yau-Huei Wei
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine and Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
16
|
Cigarette Smoke Extract-Induced Oxidative Stress and Fibrosis-Related Genes Expression in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4676289. [PMID: 27340508 PMCID: PMC4909929 DOI: 10.1155/2016/4676289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/31/2023]
Abstract
Cigarette smoking is the most important risk factor for the development or deterioration of Graves' ophthalmopathy. Smoke-induced increased generation of reactive oxygen species may be involved. However, it remains to be clarified how orbital fibroblasts are affected by cigarette smoking. Our study demonstrated that Graves' orbital fibroblasts have exaggerated response to cigarette smoke extract challenge along with increased oxidative stress, fibrosis-related genes expression, especially connective tissue growth factor, and intracellular levels of transforming growth factor-β1 and interleukin-1β. The findings obtained in this study provide some clues for the impact of cigarette smoking on Graves' ophthalmopathy and offer a theoretical basis for the potential and rational use of antioxidants in treating Graves' ophthalmopathy.
Collapse
|