1
|
Schenk EB, Meunier FA, Oelz DB. Spatial redistribution of neurosecretory vesicles upon stimulation accelerates their directed transport to the plasma membrane. PLoS One 2022; 17:e0264521. [PMID: 35294476 PMCID: PMC8926195 DOI: 10.1371/journal.pone.0264521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Through the integration of results from an imaging analysis of intracellular trafficking of labelled neurosecretory vesicles in chromaffin cells, we develop a Markov state model to describe their transport and binding kinetics. Our simulation results indicate that a spatial redistribution of neurosecretory vesicles occurs upon secretagogue stimulation leading vesicles to the plasma membrane where they undergo fusion thereby releasing adrenaline and noradrenaline. Furthermore, we find that this redistribution alone can explain the observed up-regulation of vesicle transport upon stimulation and its directional bias towards the plasma membrane. Parameter fitting indicates that in the deeper compartment within the cell, vesicle transport is asymmetric and characterised by a bias towards the plasma membrane.
Collapse
Affiliation(s)
- Elaine B. Schenk
- School of Mathematics & Physics, The University of Queensland, Brisbane, Australia
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Australia
| | - Dietmar B. Oelz
- School of Mathematics & Physics, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
2
|
Oelz DB. Quasi-steady-state reduction of a model for cytoplasmic transport of secretory vesicles in stimulated chromaffin cells. J Math Biol 2021; 82:29. [PMID: 33661393 DOI: 10.1007/s00285-021-01583-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/21/2021] [Accepted: 02/14/2021] [Indexed: 11/27/2022]
Abstract
Neurosecretory cells spatially redistribute their pool of secretory vesicles upon stimulation. Recent observations suggest that in chromaffin cells vesicles move either freely or in a directed fashion by what appears to be a conveyor belt mechanism. We suggest that this observation reflects the transient active transport through molecular motors along cytoskeleton fibres and quantify this effect using a 1D mathematical model that couples a diffusion equation to advection equations. In agreement with recent observations the model predicts that random motion dominates towards the cell centre whereas directed motion prevails in the region abutting the cortical membrane. Furthermore the model explains the observed bias of directed transport towards the periphery upon stimulation. Our model suggests that even if vesicle transport is indifferent with respect to direction, stimulation creates a gradient of free vesicles at first and this triggers the bias of transport in forward direction. Using matched asymptotic expansion we derive an approximate drift-diffusion type model that is capable of quantifying this effect. Based on this model we compute the characteristic time for the system to adapt to stimulation and we identify a Michaelis-Menten-type law describing the flux of vesicles entering the pathway to exocytosis.
Collapse
Affiliation(s)
- Dietmar B Oelz
- School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Brännmark C, Lövfors W, Komai AM, Axelsson T, El Hachmane MF, Musovic S, Paul A, Nyman E, Olofsson CS. Mathematical modeling of white adipocyte exocytosis predicts adiponectin secretion and quantifies the rates of vesicle exo- and endocytosis. J Biol Chem 2017; 292:20032-20043. [PMID: 28972187 DOI: 10.1074/jbc.m117.801225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
Adiponectin is a hormone secreted from white adipocytes and takes part in the regulation of several metabolic processes. Although the pathophysiological importance of adiponectin has been thoroughly investigated, the mechanisms controlling its release are only partly understood. We have recently shown that adiponectin is secreted via regulated exocytosis of adiponectin-containing vesicles, that adiponectin exocytosis is stimulated by cAMP-dependent mechanisms, and that Ca2+ and ATP augment the cAMP-triggered secretion. However, much remains to be discovered regarding the molecular and cellular regulation of adiponectin release. Here, we have used mathematical modeling to extract detailed information contained within our previously obtained high-resolution patch-clamp time-resolved capacitance recordings to produce the first model of adiponectin exocytosis/secretion that combines all mechanistic knowledge deduced from electrophysiological experimental series. This model demonstrates that our previous understanding of the role of intracellular ATP in the control of adiponectin exocytosis needs to be revised to include an additional ATP-dependent step. Validation of the model by introduction of data of secreted adiponectin yielded a very close resemblance between the simulations and experimental results. Moreover, we could show that Ca2+-dependent adiponectin endocytosis contributes to the measured capacitance signal, and we were able to predict the contribution of endocytosis to the measured exocytotic rate under different experimental conditions. In conclusion, using mathematical modeling of published and newly generated data, we have obtained estimates of adiponectin exo- and endocytosis rates, and we have predicted adiponectin secretion. We believe that our model should have multiple applications in the study of metabolic processes and hormonal control thereof.
Collapse
Affiliation(s)
- Cecilia Brännmark
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - William Lövfors
- Departments of Biomedical Engineering, SE-581 83 Linköping; Mathematics, Linköping University, SE-581 83 Linköping
| | - Ali M Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - Tom Axelsson
- Departments of Biomedical Engineering, SE-581 83 Linköping
| | - Mickaël F El Hachmane
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10 SE-412 96 Göteborg
| | - Elin Nyman
- Departments of Biomedical Engineering, SE-581 83 Linköping; Cardiovascular and Metabolic Diseases iMed Biotech Unit, AstraZeneca R&D, 431 83 Gothenburg, Sweden.
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg.
| |
Collapse
|