1
|
Tahermanesh K, Hakimpour S, Govahi A, Rokhgireh S, Mehdizadeh M, Minaeian S, Barati M, Chaichian S, Kashi AM, Nassiri S, Eslahi N, Ajdary M, Ahmadi M. Evaluation of expression of biomarkers of PLAGL1 (ZAC1), microRNA, and their non-coding RNAs in patients with endometriosis. J Gynecol Obstet Hum Reprod 2023; 52:102568. [PMID: 36868502 DOI: 10.1016/j.jogoh.2023.102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Since the PLAGL1 (ZAC1) gene is expressed in the human endometrium. It may be involved in the etiology of endometrial disorders by its abnormal regulation and expression. This study aimed to investigate the Zac1 gene and related microRNA and LncRNA and its alterations in patients with endometriosis. Blood plasma, ectopic (EC) and eutopic (EU) endometrial samples were gathered from 30 patients with endometriosis and 30 healthy fertile women, and the Q-PCR technique was used to determine the expression level of Zac1 mRNA and microRNAs (miR-1271-5p, hsa-miR-490-3pin) and LncRNAs (TONSL-AS1 TONSL, KCNQ1OT1 KCNQ1). According to the results, the Zac1 gene and KCNQ1OT1 KCNQ1, TONSL-AS1 TONSL LncRNA expression were significantly decreased in the endometriosis group versus the control group (P < 0.05). MiR-1271-5p and hsa-miR-490-3pin microRNA expression were significantly raised in the endometriosis group as opposed to the control group (P < 0.05). In summary, this research for the first time revealed that identifying Zac1 expression provides us with new indicators for evaluating endometriosis.
Collapse
Affiliation(s)
- Kobra Tahermanesh
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sahar Hakimpour
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samaneh Rokhgireh
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Setare Nassiri
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Eslahi
- Air Pollution Research Center, Iran University of Medical Science, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Ahmadi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
2
|
Li W, Sun K, Hu F, Chen L, Zhang X, Wang F, Yan B. Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: A mini review. J Biochem Mol Toxicol 2020; 35:e22658. [PMID: 33118292 DOI: 10.1002/jbt.22658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been seen in the pathological states of many disorders such as ischemic diseases and cancers. Many natural compounds (NCs) have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. The modulation of oxidative stress by NCs via activating the Nrf2 signaling pathway is summarized in the review. Three NCs, ursolic acid, betulinic acid, and curcumin, and the mechanisms of their cytoprotective effects are investigated in myocardial ischemia, cerebral ischemia, skin cancer, and prostate cancer. To promote the therapeutic performance of NCs with poor water solubility, the formulation approach, such as the nano drug delivery system, is elaborated as well in this review.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Chen
- China National Intellectual Property Administration Patent Re-examination and Invalidation Department Pharmaceutical Division, Beijing, China
| | - Xing Zhang
- Departments of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu, China
| | - Fuxing Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingchun Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Chu YW, Liu ST, Yang YL, Huang SM, Wang WM. The cytotoxic mechanism of epigallocatechin gallate on proliferative HaCaT keratinocytes. J Biomed Sci 2017; 24:55. [PMID: 28810862 PMCID: PMC5556358 DOI: 10.1186/s12929-017-0363-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigallocatechin gallate (EGCG) is the major ingredient of sinecatechins ointment, approved for the treatment of external genital and perianal warts. However, the molecular mechanism for EGCG's effect on warts resulting from the human papillomavirus (HPV) infection of keratinocytes is not well understood. HPV may survive in proliferative keratinocytes and may be involved in cell cycle regulation and progression. The objective of this study was to investigate the mechanism underlying EGCG's treatment on external genital warts of HPV infection through the cultured keratinocyte cells from the HaCaT cell line. METHODS MTT and flow cytometry assays were used to measure cell viability and the cell cycle profile, with and without EGCG treatment, for HaCaT keratinocyte cells cultured in a calcium-free medium and 1.8 mM calcium which induced proliferative and differentiated keratinocytes, respectively, for 24 h. The expression levels of cytotoxic proteins and factors were evaluated with the RT-PCR and western blotting analysis. RESULTS EGCG influenced the proliferation stage but not the differentiation stage of keratinocytes. We suggest that apoptosis and autophagy might be the possible mechanism for the EGCG's effect on the proliferative HaCaT cells. Furthermore, we found that EGCG reduced the protein levels of cyclin D1 and Zac1 (a zinc-finger protein which regulates apoptosis and cell cycle arrest 1) dose-dependently in proliferative as compared to differentiated keratinocytes. It also induced the expression of p21 and DEC1 (differentiated embryo-chondrocyte expressed gene 1), and promoted G1 arrest of cell cycle in proliferative keratinocytes. CONCLUSIONS These results help clarify the mechanisms of EGCG treatment of HPV-infected keratinocytes and may contribute to new targets, such as Zac1 and DEC1 for external genital and perianal warts.
Collapse
Affiliation(s)
- Yu-Wen Chu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China.,Department of Pharmacy, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China
| | - Ya-Lan Yang
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China. .,Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China.
| | - Wei-Ming Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China. .,Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, Republic of China.
| |
Collapse
|