1
|
Rodriguez MC, Sautua F, Scandiani M, Carmona M, Asurmendi S. Current recommendations and novel strategies for sustainable management of soybean sudden death syndrome. PEST MANAGEMENT SCIENCE 2021; 77:4238-4248. [PMID: 33942966 DOI: 10.1002/ps.6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
The increase in food production requires reduction of the damage caused by plant pathogens, minimizing the environmental impact of management practices. Soil-borne pathogens are among the most relevant pathogens that affect soybean crop yield. Soybean sudden death syndrome (SDS), caused by several distinct species of Fusarium, produces significant yield losses in the leading soybean-producing countries in North and South America. Current management strategies for SDS are scarce since there are no highly resistant cultivars and only a few fungicide seed treatments are available. Because of this, innovative approaches for SDS management need to be developed. Here, we summarize recently explored strategies based on plant nutrition, biological control, priming of plant defenses, host-induced gene silencing, and the development of new SDS-resistance cultivars using precision breeding techniques. Finally, sustainable management of SDS should also consider cultural control practices with minimal environmental impact. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Sautua
- Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Scandiani
- Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo Carmona
- Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhang L, Huang W, Peng D, Liu S. Comparative genomic analyses of two segregating mutants reveal seven genes likely involved in resistance to Fusarium equiseti in soybean via whole genome re-sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2997-3008. [PMID: 31338526 DOI: 10.1007/s00122-019-03401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE The candidate genes involved in resistance to Fusarium equiseti in soybean PI 437654 were identified through comparative genomic analyses of mutants via whole genome re-sequencing. The fungus Fusarium infects each stage of the growth and development of soybean and causes soybean (Glycine max (L.)) seed and root rot and seedling damping-off and wilt with a large quantity of annual yield loss worldwide. It is very important to identify the resistant genes in soybean to prevent and control this pathogen. One Fusarium equiseti isolate was previously identified to be incompatible with 'PI 437654' but compatible with a Chinese soybean cultivar 'Zhonghuang 13'. In this study, with the infection of this isolate on the seedling roots of developed PI 437654 mutants, 6 mutants were identified from 500 mutants to significantly alter their phenotypes to F. equiseti compared to wild-type PI 437654. Then, two identified segregating mutants were selected to directly perform whole genome re-sequencing. Finally, through comparative genomic analyses 7 genes including one cluster of 4 nucleotide binding site-leucine-rich repeat genes on one genomic region of chromosome 7, a 60S ribosomal protein L12 gene and 2 uncharacterized genes were identified to be likely involved in the resistance to F. equiseti. These genes will facilitate the breeding of resistant germplasm resources and the identification of resistance of soybean to Fusarium spp.
Collapse
Affiliation(s)
- Liuping Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
3
|
Rosati RG, Lario LD, Hourcade ME, Cervigni GDL, Luque AG, Scandiani MM, Spampinato CP. Primary metabolism changes triggered in soybean leaves by Fusarium tucumaniae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:91-100. [PMID: 30080645 DOI: 10.1016/j.plantsci.2018.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Sudden death syndrome (SDS) of soybean can be caused by at least four distinct Fusarium species, with F. tucumaniae being the main causal agent in Argentina. The fungus is a soil-borne pathogen that is largely confined to the roots, but damage also reaches aerial part of the plant and interveinal chlorosis and necrosis, followed by premature defoliation can be observed. In this study, two genetically diverse soybean cultivars, one susceptible (NA 4613) and one partially resistant (DM 4670) to SDS infection, were inoculated with F. tucumaniae or kept uninoculated. Leaf samples at 7, 10, 14 and 25 days post-inoculation (dpi) were chosen for analysis. With the aim of detecting early markers that could potentially discriminate the cultivar response to SDS, gas chromatography-mass spectrometry (GC-MS) analyses and biochemical studies were performed. Metabolic analyses show higher levels of several amino acids in the inoculated than in the uninoculated susceptible cultivar starting at 10 dpi. Biochemical studies indicate that pigment contents and Rubisco level were reduced while class III peroxidase activity was increased in the inoculated susceptible plant at 10 dpi. Taken together, our results indicate that the pathogen induced an accumulation of amino acids, a decrease of the photosynthetic activity, and an increase of plant-specific peroxidase activity in the susceptible cultivar before differences of visible foliar symptoms between genotypes could be observed, thus suggesting that metabolic and biochemical approaches may contribute to a rapid characterization of the cultivar response to SDS.
Collapse
Affiliation(s)
- Romina G Rosati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Luciana D Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Mónica E Hourcade
- Laboratorio de Cromatografía Gaseosa y Espectrometría de Masas, Sala de Instrumental Central, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Gerardo D L Cervigni
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alicia G Luque
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María M Scandiani
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
4
|
Wang B, Sumit R, Sahu BB, Ngaki MN, Srivastava SK, Yang Y, Swaminathan S, Bhattacharyya MK. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants. PLANT PHYSIOLOGY 2018; 176:865-878. [PMID: 29101280 PMCID: PMC5761755 DOI: 10.1104/pp.16.01982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/21/2017] [Indexed: 05/02/2023]
Abstract
Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1 In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome.
Collapse
Affiliation(s)
- Bing Wang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | | - Yang Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | |
Collapse
|
5
|
Zhang B, Wang B, Morales AW, Scudder J, Bhattacharyya MK, Ye JY. Study of the Interactions of Fusarium virguliforme Toxin FvTox1 with Synthetic Peptides by Molecular Simulations and a Label-Free Biosensor. Anal Chem 2016; 88:3024-30. [PMID: 26859241 DOI: 10.1021/acs.analchem.5b02442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fusarium virguliforme is a soil borne pathogen that causes sudden death syndrome (SDS) in soybean plants. This pathogenic disease may result in severe soybean yield suppression and can cause serious economic harm. It has been shown that the FvTox1 toxin produced by the pathogen may be the root cause of foliar SDS. Anti-FvTox1 single-chain variable fragment antibody expressed in transgenic soybean plants was shown to neutralize the FvTox1 toxin involved in foliar SDS development. Here, we have investigated the binding affinities of FvTox1 with four FvTox1-interacting peptides of 7 to 12 amino acids identified from phage display libraries using both bioinformatics-based molecular simulations and label-free bioassays with a unique photonic crystal biosensor. Results from the molecular simulations have predicted the interaction energies and 3-dimensional (3D) structures of FvTox1 and FvTox1-interacting peptide complexes. Our label-free binding assays have further provided the interaction strength of FvTox1 with four different FvTox1-interacting peptides and experimentally confirmed the simulation results obtained from bioinformatics-based molecular calculations.
Collapse
Affiliation(s)
- Bailin Zhang
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Bing Wang
- Department of Agronomy, Iowa State University , Ames, Iowa 50011, United States
| | - Andres W Morales
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Jonathan Scudder
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | | | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| |
Collapse
|