1
|
Freitas LS, Silva GS, dos Santos IC, Ferreira ACR, Santos LES, Umaharan P, Motilal LA, Calle-Bellido J, Zhang D, Corrêa RX, Ahnert D. Elite Cacao Clonal Cultivars with Diverse Genetic Structure, High Potential of Production, and Good Organoleptic Quality Are Helping to Rebuild the Cocoa Industry in Brazil. Int J Mol Sci 2025; 26:3386. [PMID: 40244280 PMCID: PMC11989740 DOI: 10.3390/ijms26073386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
In the Americas' leading cocoa-producing countries, more productive clonal cultivars than traditional biclonal hybrids have been created. In Brazil, several disease-resistant and self-compatible clones such as PS 1319, FA 13, and SJ 02 have been selected on producer farms. The CCN 51 clone from Ecuador is also significant in Brazil. This study aimed to analyze these clones concerning their genetic structures using single-nucleotide polymorphisms, productive potential, disease resistance, and the physico-chemical and organoleptic characteristics of the beans. Clone SJ 02 has ancestry from Contamana (40.7%), Iquitos (34.5%), and Amelonado (23.5%). PS 1319 is primarily Amelonado (67.9%), with Criollo (15.7%) and Contamana (15.6%). FA 13 mainly consists of Amelonado (53.5%) and Iquitos (44.1%). Local cultivars of Bahia are mostly Amelonado, with 99.8% in Comum and Parazinho, 97.4% in Maranhão, and 95.5% in Pará. PS 1319, SJ 02, and FA 13 clones were significantly more productive than CCN 51 but did not differ in disease resistance levels. Significant differences were noted among the cultivars in physicochemical traits (fat, caffeine, and theobromine content). Sensorially, SJ 02 outperformed the other cultivars and was comparable to the reference clone BN 34. The findings indicate that Brazil's elite clones, derived from complex crosses involving Amelonado, Contamana, Iquitos, and Criollo groups, are productive, resistant, and exhibit favorable physico-chemical and organoleptic qualities, making them valuable for future clonal breeding programs.
Collapse
Affiliation(s)
- Lívia Souza Freitas
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (L.S.F.); (D.A.)
- Centro de Inovação do Cacau, Ilhéus 45662-900, BA, Brazil; (I.C.d.S.); (A.C.R.F.); (L.E.S.S.)
| | - Gonçalo Santos Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (L.S.F.); (D.A.)
- Centro de Inovação do Cacau, Ilhéus 45662-900, BA, Brazil; (I.C.d.S.); (A.C.R.F.); (L.E.S.S.)
| | | | | | | | - Pathmanthan Umaharan
- Cocoa Research Unit, The University of the West Indies, Saint Agustine 311331, Trinidad and Tobago; (P.U.); (L.A.M.)
| | - Lambert A. Motilal
- Cocoa Research Unit, The University of the West Indies, Saint Agustine 311331, Trinidad and Tobago; (P.U.); (L.A.M.)
| | | | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705, USA;
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (L.S.F.); (D.A.)
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil
| | - Dário Ahnert
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (L.S.F.); (D.A.)
- Centro de Inovação do Cacau, Ilhéus 45662-900, BA, Brazil; (I.C.d.S.); (A.C.R.F.); (L.E.S.S.)
| |
Collapse
|
2
|
Lavoie A, Thomas E, Olivier A. Local working collections as the foundation for an integrated conservation of Theobroma cacao L. in Latin America. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1063266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The intraspecific diversity of cacao has traditionally been preserved in genebanks. However, these establishments face various challenges, notably insufficient funding, accession redundancy, misidentification and lack of wild cacao population samples. In natural environments, it is expected that unknown varieties of cacao may still be found, but wild populations of cacao are increasingly threatened by climate change, deforestation, habitat loss, land use changes and poor knowledge. Farmers also retain diversity, but on-farm conservation is affected by geopolitical, economic, management and cultural issues, that are influenced at multiple scales, from the household to the international market. Taking separately, ex situ, in situ and on-farm conservation have not achieved adequate conservation fostering the inclusion of all stakeholders and the broad use of cacao diversity. We analyze the use of the traditional conservation strategies (ex situ, in situ and on-farm) and propose an integrated approach based on local working collections to secure cacao diversity in the long term. We argue that national conservation networks should be implemented in countries of origin to simultaneously maximize alpha (diversity held in any given working collection), beta (the change in diversity between working collections in different regions) and gamma diversity (overall diversity in a country).
Collapse
|
3
|
Lopes UV, Pires JL, Gramacho KP, Grattapaglia D. Genome-wide SNP genotyping as a simple and practical tool to accelerate the development of inbred lines in outbred tree species: An example in cacao (Theobroma cacao L.). PLoS One 2022; 17:e0270437. [PMID: 36288356 PMCID: PMC9604995 DOI: 10.1371/journal.pone.0270437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Cacao is a globally important crop with a long history of domestication and selective breeding. Despite the increased use of elite clones by cacao farmers, worldwide plantations are established mainly using hybrid progeny material derived from heterozygous parents, therefore displaying high tree-to-tree variability. The deliberate development of hybrids from advanced inbred lines produced by successive generations of self-pollination has not yet been fully considered in cacao breeding. This is largely due to the self-incompatibility of the species, the long generation cycles (3–5 years) and the extensive trial areas needed to accomplish the endeavor. We propose a simple and accessible approach to develop inbred lines based on accelerating the buildup of homozygosity based on regular selfing assisted by genome-wide SNP genotyping. In this study we genotyped 90 clones from the Brazilian CEPEC´s germplasm collection and 49 inbred offspring of six S1 or S2 cacao families derived from self-pollinating clones CCN-51, PS-13.19, TSH-1188 and SIAL-169. A set of 3,380 SNPs distributed across the cacao genome were interrogated on the EMBRAPA multi-species 65k Infinium chip. The 90 cacao clones showed considerable variation in genome-wide SNP homozygosity (mean 0.727± 0.182) and 19 of them with homozygosity ≥90%. By assessing the increase in homozygosity across two generations of self-pollinations, SNP data revealed the wide variability in homozygosity within and between S1 and S2 families. Even in small families (<10 sibs), individuals were identified with up to ~1.5 standard deviations above the family mean homozygosity. From baseline homozygosities of 0.476 and 0.454, offspring with homozygosities of 0.862 and 0.879 were recovered for clones TSH-1188 and CCN-51 respectively, in only two generations of selfing (81–93% increase). SNP marker assisted monitoring and selection of inbred individuals can be a practical tool to optimize and accelerate the development of inbred lines of outbred tree species. This approach will allow a faster and more accurate exploitation of hybrid breeding strategies in cacao improvement programs and potentially in other perennial fruit and forest trees.
Collapse
Affiliation(s)
| | | | | | - Dario Grattapaglia
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
4
|
Structural and Functional Genomics of the Resistance of Cacao to Phytophthora palmivora. Pathogens 2021; 10:pathogens10080961. [PMID: 34451425 PMCID: PMC8398157 DOI: 10.3390/pathogens10080961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
Black pod disease, caused by Phytophthora spp., is one of the main diseases that attack cocoa plantations. This study validated, by association mapping, 29 SSR molecular markers flanking to QTL (Quantitative Trait Loci) associated with Phytophthora palmivora Butler (Butler) (PP) resistance, in three local ancient varieties of the Bahia (Comum, Pará, and Maranhão), varieties that have a high potential in the production of gourmet chocolate. Four SSR loci associated with resistance to PP were detected, two on chromosome 8, explaining 7.43% and 3.72% of the Phenotypic Variation (%PV), one on chromosome 2 explaining 2.71%PV and one on chromosome 3 explaining 1.93%PV. A functional domains-based annotation was carried out, in two Theobroma cacao (CRIOLLO and MATINA) reference genomes, of 20 QTL regions associated with cocoa resistance to the pathogen. It was identified 164 (genome CRIOLLO) and 160 (genome MATINA) candidate genes, hypothetically involved in the recognition and activation of responses in the interaction with the pathogen. Genomic regions rich in genes with Coiled-coils (CC), nucleotide binding sites (NBS) and Leucine-rich repeat (LRR) domains were identified on chromosomes 1, 3, 6, 8, and 10, likewise, regions rich in Receptor-like Kinase domain (RLK) and Ginkbilobin2 (GNK2) domains were identified in chromosomes 4 and 6.
Collapse
|
5
|
Díaz-Valderrama JR, Leiva-Espinoza ST, Aime MC. The History of Cacao and Its Diseases in the Americas. PHYTOPATHOLOGY 2020; 110:1604-1619. [PMID: 32820671 DOI: 10.1094/phyto-05-20-0178-rvw] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cacao is a commodity crop from the tropics cultivated by about 6 million smallholder farmers. The tree, Theobroma cacao, originated in the Upper Amazon where it was domesticated ca. 5450 to 5300 B.P. From this center of origin, cacao was dispersed and cultivated in Mesoamerica as early as 3800 to 3000 B.P. After the European conquest of the Americas (the 1500s), cacao cultivation intensified in several loci, primarily Mesoamerica, Trinidad, Venezuela, and Ecuador. It was during the colonial period that cacao diseases began emerging as threats to production. One early example is the collapse of the cacao industry in Trinidad in the 1720s, attributed to an unknown disease referred to as the "blast". Trinidad would resurface as a production center due to the discovery of the Trinitario genetic group, which is still widely used in breeding programs around the world. However, a resurgence of diseases like frosty pod rot during the republican period (the late 1800s and early 1900s) had profound impacts on other centers of Latin American production, especially in Venezuela and Ecuador, shifting the focus of cacao production southward, to Bahia, Brazil. Production in Bahia was, in turn, dramatically curtailed by the introduction of witches' broom disease in the late 1980s. Today, most of the world's cacao production occurs in West Africa and parts of Asia, where the primary Latin American diseases have not yet spread. In this review, we discuss the history of cacao cultivation in the Americas and how that history has been shaped by the emergence of diseases.
Collapse
Affiliation(s)
- Jorge R Díaz-Valderrama
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Santos T Leiva-Espinoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
6
|
Potential Applicability of Cocoa Pulp ( Theobroma cacao L) as an Adjunct for Beer Production. ScientificWorldJournal 2020; 2020:3192585. [PMID: 32934606 PMCID: PMC7484685 DOI: 10.1155/2020/3192585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate the application of cocoa pulp as an adjunct for malt in beer production. The cocoa pulp was analyzed for humidity, proteins, lipids, sugars, total soluble solids, organic acids, and minerals. A study was carried out to reduce the cocoa pulp viscosity by enzymatic depectinization, making its use viable in beer production. The cocoa pulp showed relevant quantities of compounds important in fermentation, such as sugars, acids, and minerals. In fermentation using the adjunct, the proportions of pulp used were 10, 30, and 49%. A significant difference was found between the adjunct and all-malt worts. The 30% cocoa pulp concentration as an adjunct for malt in the fermentation medium contributed the most to the fermentative performance of the yeasts at both 15 and 22°C based on the consumption of apparent extract (°Plato), ethanol production, and cellular growth.
Collapse
|
7
|
Manrique S, Friel J, Gramazio P, Hasing T, Ezquer I, Bombarely A. Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3007-3019. [PMID: 31152173 DOI: 10.1093/jxb/erz231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Plant domestication is the process of adapting plants to human use by selecting specific traits. The selection process often involves the modification of some components of the plant reproductive mechanisms. Allelic variants of genes associated with flowering time, vernalization, and the circadian clock are responsible for the adaptation of crops, such as rice, maize, barley, wheat, and tomato, to non-native latitudes. Modifications in the plant architecture and branching have been selected for higher yields and easier harvests. These phenotypes are often produced by alterations in the regulation of the transition of shoot apical meristems to inflorescences, and then to floral meristems. Floral homeotic mutants are responsible for popular double-flower phenotypes in Japanese cherries, roses, camellias, and lilies. The rise of peloric flowers in ornamentals such as snapdragon and florists' gloxinia is associated with non-functional alleles that control the relative expansion of lateral and ventral petals. Mechanisms to force outcrossing such as self-incompatibility have been removed in some tree crops cultivars such as almonds and peaches. In this review, we revisit some of these important concepts from the plant domestication perspective, focusing on four topics related to the pre-fertilization mechanisms: flowering time, inflorescence architecture, flower development, and pre-fertilization self-incompatibility mechanisms.
Collapse
Affiliation(s)
- Silvia Manrique
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Center (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomas Hasing
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Aureliano Bombarely
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Suguiyama VF, Vasconcelos LAB, Rossi MM, Biondo C, de Setta N. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS One 2019; 14:e0214542. [PMID: 31107873 PMCID: PMC6527191 DOI: 10.1371/journal.pone.0214542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) in plant genomes differ in abundance, structure and genomic distribution, reflecting the large number of evolutionary lineages. Elements within lineages can be considered populations, in which each element is an individual in its genomic environment. In this way, it would be reasonable to apply microevolutionary analyses to understand transposable element (TE) evolution, such as those used to study the genetic structure of natural populations. Here, we applied a Bayesian method to infer genetic structure of populations together with classical phylogenetic and dating tools to analyze LTR-RT evolution using the monocot Setaria italica as a model species. In contrast to a phylogeny, the Bayesian clusterization method identifies populations by assigning individuals to one or more clusters according to the most probabilistic scenario of admixture, based on genetic diversity patterns. In this work, each LTR-RT insertion was considered to be one individual and each LTR-RT lineage was considered to be a single species. Nine evolutionary lineages of LTR-RTs were identified in the S. italica genome that had different genetic structures with variable numbers of clusters and levels of admixture. Comprehensive analysis of the phylogenetic, clusterization and time of insertion data allowed us to hypothesize that admixed elements represent sequences that harbor ancestral polymorphic sequence signatures. In conclusion, application of microevolutionary concepts in genome evolution studies is suitable as a complementary approach to phylogenetic analyses to address the evolutionary history and functional features of TEs.
Collapse
Affiliation(s)
- Vanessa Fuentes Suguiyama
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | - Maria Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cibele Biondo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:4-17. [PMID: 28985014 PMCID: PMC5785363 DOI: 10.1111/pbi.12848] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 05/03/2023]
Abstract
Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology.
Collapse
Affiliation(s)
| | - Jim M. Dunwell
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
10
|
Pereira AS, de Almeida AAF, Branco MCDS, Costa MGC, Ahnert D. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids. PLoS One 2017. [PMID: 28628670 PMCID: PMC5476260 DOI: 10.1371/journal.pone.0178790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected.
Collapse
Affiliation(s)
- Allan Silva Pereira
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
| | - Alex-Alan Furtado de Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
- * E-mail:
| | - Márcia Christina da Silva Branco
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
| | - Marcio Gilberto Cardoso Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
| | - Dario Ahnert
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
- Centro de Pesquisas do Cacau, Comissão Executiva do Plano da Lavoura Cacaueira (CEPEC/CEPLAC). Rod. Jorge Amado, Ilhéus, BA, Brasil
| |
Collapse
|