1
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Metabolic heterogeneity in early-stage lung adenocarcinoma revealed by RNA-seq and scRNA-seq. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1844-1855. [PMID: 36692643 DOI: 10.1007/s12094-023-03082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Cancer cells maintain cell growth, division, and survival through altered energy metabolism. However, research on metabolic reprogramming in lung adenocarcinoma (LUAD) is limited METHODS: We downloaded TCGA and GEO sequencing data. Consistent clustering with the ConsensusClusterPlus package was employed to detect the scores for four metabolism-related pathways. The LUAD samples in the TCGA dataset were clustered with ConsensusClusterPlus, and the optimal number of clusters was determined according to the cumulative distribution function (CDF). The cell score for each sample in the TCGA dataset was calculated using the MCPcounter estimate function of the MCPcounter package. RESULTS We identified two subtypes by scoring the samples based on the 4 metabolism-related pathways and cluster dimensionality reduction. The prognosis of cluster B was obviously poorer than that of cluster A in patients with LUAD. The analysis of single-nucleotide variation (SNV) data showed that the top 15 genes in the four metabolic pathways with the most mutations were TKTL2, PGK2, HK3, EHHADH, GLUD2, PKLR, TKTL1, HADHB, CPT1C, HK1, HK2, PFKL, SLC2A3, PFKFB1, and CPT1A. The IFNγ score of cluster B was significantly higher than that of cluster A. The immune T-cell lytic activity score of cluster B was significantly higher than that of cluster A. We further identified 5 immune cell subsets from single-cell sequencing data. The top 5 marker genes of B cells were IGHM, JCHAIN, IGLC3, IGHA1, and IGKC. The C0 subgroup of monocytes had a higher pentose phosphate pathway (PPP) score than the C6 subgroup. CONCLUSIONS Metabolism-related subtypes could be potential biomarkers in the prognosis prediction and treatment of LUAD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Chung WC, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance 2020; 4:4/2/e201900503. [PMID: 33268505 PMCID: PMC7756968 DOI: 10.26508/lsa.201900503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Notch signaling exerts both oncogenic and tumor-suppressive functions in the pancreas. In this study, deletion of Jag1 in conjunction with oncogenic Kras G12D expression in the mouse pancreas induced rapid development of acinar-to-ductal metaplasia and early stage pancreatic intraepithelial neoplasm; however, culminating in cystic neoplasms rather than ductal adenocarcinoma. Most cystic lesions in these mice were reminiscent of serous cystic neoplasm, and the rest resembled intraductal papillary mucinous neoplasm. Jag1 expression was lost or decreased in cystic lesions but retained in adenocarcinoma in these mice, so was the expression of Sox9. In pancreatic cancer patients, JAG1 expression is higher in cancerous tissue, and high JAG1 is associated with poor overall survival. Expression of SOX9 is correlated with JAG1, and high SOX9 is also associated with poor survival. Mechanistically, Jag1 regulates expression of Lkb1, a tumor suppressor involved in the development of pancreatic cystic neoplasm. Collectively, Jag1 can act as a tumor suppressor in the pancreas by delaying precursor lesions, whereas loss of Jag1 promoted a phenotypic switch from malignant carcinoma to benign cystic lesions.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lavanya Challagundla
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yunyun Zhou
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Min Li
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Keli Xu
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA .,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
4
|
Just PA, Charawi S, Denis RGP, Savall M, Traore M, Foretz M, Bastu S, Magassa S, Senni N, Sohier P, Wursmer M, Vasseur-Cognet M, Schmitt A, Le Gall M, Leduc M, Guillonneau F, De Bandt JP, Mayeux P, Romagnolo B, Luquet S, Bossard P, Perret C. Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nat Commun 2020; 11:6127. [PMID: 33257663 PMCID: PMC7705018 DOI: 10.1038/s41467-020-19490-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive glucose production by the liver is a key factor in the hyperglycemia observed in type 2 diabetes mellitus (T2DM). Here, we highlight a novel role of liver kinase B1 (Lkb1) in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect is observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion is associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic, proteomic and pharmacological approaches, we identify the aminotransferases and specifically Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis. Excessive glucose production by the liver contributes to poor blood glucose control in type 2 diabetes. Here the authors report that the liver kinase B1 (Lkb1) suppresses amino acid driven postprandial glucose production in the liver through the aminotransferase Agxt.
Collapse
Affiliation(s)
- Pierre-Alexandre Just
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,APHP, Centre-Université de Paris, Paris, France
| | - Sara Charawi
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Raphaël G P Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Mathilde Savall
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Massiré Traore
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Sultan Bastu
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | | | - Nadia Senni
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Pierre Sohier
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Maud Wursmer
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRA 1392, Sorbonne Universités Paris and Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy, France
| | - Alain Schmitt
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,Electron Miscroscopy Facility, Institut Cochin, F75014, Paris, France
| | - Morgane Le Gall
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Marjorie Leduc
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - François Guillonneau
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.,3P5 proteom'IC Facility, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Béatrice Romagnolo
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Pascale Bossard
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France
| | - Christine Perret
- Université de Paris, Institut Cochin, INSERM, CNRS, F75014, Paris, France.
| |
Collapse
|
5
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
6
|
Maillet V, Boussetta N, Leclerc J, Fauveau V, Foretz M, Viollet B, Couty JP, Celton-Morizur S, Perret C, Desdouets C. LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration. Cell Rep 2019; 22:1994-2005. [PMID: 29466728 DOI: 10.1016/j.celrep.2018.01.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
Liver kinase B1 (LKB1) is involved in several biological processes and is a key regulator of hepatic metabolism and polarity. Here, we demonstrate that the master kinase LKB1 plays a dual role in liver regeneration, independently of its major target, AMP-activated protein kinase (AMPK). We found that the loss of hepatic Lkb1 expression promoted hepatocyte proliferation acceleration independently of metabolic/energetic balance. LKB1 regulates G0/G1 progression, specifically by controlling epidermal growth factor receptor (EGFR) signaling. Furthermore, later in regeneration, LKB1 controls mitotic fidelity. The deletion of Lkb1 results in major alterations to mitotic spindle formation along the polarity axis. Thus, LKB1 deficiency alters ploidy profile at late stages of regeneration. Our findings highlight the dual role of LKB1 in liver regeneration, as a guardian of hepatocyte proliferation and genomic integrity.
Collapse
Affiliation(s)
- Vanessa Maillet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadia Boussetta
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jocelyne Leclerc
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fauveau
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Pierre Couty
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Séverine Celton-Morizur
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Perret
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
7
|
Charawi S, Just PA, Savall M, Abitbol S, Traore M, Metzger N, Ravinger R, Cavard C, Terris B, Perret C. LKB1 signaling is activated in CTNNB1-mutated HCC and positively regulates β-catenin-dependent CTNNB1-mutated HCC. J Pathol 2018; 247:435-443. [PMID: 30566242 DOI: 10.1002/path.5202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinomas (HCCs) are known to be highly heterogenous. Within the extensive histopathological and molecular heterogeneity of HCC, tumors with mutations in CTNNB1, encoding β-catenin (CTNNB1-mutated HCC), constitute a very homogeneous group. We previously characterized a distinctive metabolic and histological phenotype for CTNNB1-mutated HCC. They were found to be well-differentiated, almost never steatotic, and often cholestatic, with a microtrabecular or acinar growth pattern. Here, we investigated whether LKB1, which controls energy metabolism, cell polarity, and cell growth, mediates the specific phenotype of CTNNB1-mutated HCC. The LKB1 protein was overexpressed in CTNNB1-mutated HCC and oncogenic activation of β-catenin in human HCC cells induced the post-transcriptional accumulation of the LKB1 protein encoded by the LKB1 (STK11) gene. Hierarchical clustering, based on the expression of a murine hepatic liver Lkb1 (Stk11) signature in a human public dataset, identified a HCC cluster, composed of almost all the CTNNB1-mutated HCC, that expresses a hepatic liver LKB1 program. This was confirmed by RT-qPCR of an independent cohort of CTNNB1-mutated HCC and the suppression of the LKB1-related profile upon β-catenin silencing of CTNNB1-mutated human hepatoma cell lines. Previous studies described an epistatic relationship between LKB1 and CTNNB1 in which LKB1 acts upstream of CTNNB1. Thus, we also analyzed the consequences of Lkb1 deletion on the zonation of hepatic metabolism, known to be the hallmark of β-catenin signaling in the liver. Lkb1 was required for the establishment of metabolic zonation in the mouse liver by positively modulating β-catenin signaling. We identified positive reciprocal cross talk between the canonical Wnt pathway and LKB1, both in normal liver physiology and during tumorigenesis that likely participates in the amplification of the β-catenin signaling by LKB1 and the distinctive phenotype of the CTNNB1-mutated HCC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sara Charawi
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Pierre-Alexandre Just
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC.,Department of Pathology, APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| | - Mathilde Savall
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Shirley Abitbol
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Massiré Traore
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Nolwenn Metzger
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Roland Ravinger
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Catherine Cavard
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC
| | - Benoit Terris
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC.,Department of Pathology, APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| | - Christine Perret
- Development Reproduction Cancer, INSERM, U1016, Institut Cochin, Paris, France.,Development Reproduction Cancer, CNRS, UMR8104, Paris, France.,Development Reproduction Cancer, Université Paris Descartes, Paris, France.,Equipe labellisée LNCC.,Department of Pathology, APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| |
Collapse
|
8
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
9
|
Fibroinflammatory Liver Injuries as Preneoplastic Condition in Cholangiopathies. Int J Mol Sci 2018; 19:ijms19123875. [PMID: 30518128 PMCID: PMC6321547 DOI: 10.3390/ijms19123875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 02/08/2023] Open
Abstract
The cholangipathies are a class of liver diseases that specifically affects the biliary tree. These pathologies may have different etiologies (genetic, autoimmune, viral, or toxic) but all of them are characterized by a stark inflammatory infiltrate, increasing overtime, accompanied by an excess of periportal fibrosis. The cellular types that mount the regenerative/reparative hepatic response to the damage belong to different lineages, including cholagiocytes, mesenchymal and inflammatory cells, which dynamically interact with each other, exchanging different signals acting in autocrine and paracrine fashion. Those messengers may be proinflammatory cytokines and profibrotic chemokines (IL-1, and 6; CXCL1, 10 and 12, or MCP-1), morphogens (Notch, Hedgehog, and WNT/β-catenin signal pathways) and finally growth factors (VEGF, PDGF, and TGFβ, among others). In this review we will focus on the main molecular mechanisms mediating the establishment of a fibroinflammatory liver response that, if perpetuated, can lead not only to organ dysfunction but also to neoplastic transformation. Primary Sclerosing Cholangitis and Congenital Hepatic Fibrosis/Caroli’s disease, two chronic cholangiopathies, known to be prodrome of cholangiocarcinoma, for which several murine models are also available, were also used to further dissect the mechanisms of fibroinflammation leading to tumor development.
Collapse
|
10
|
YAP Activation Drives Liver Regeneration after Cholestatic Damage Induced by Rbpj Deletion. Int J Mol Sci 2018; 19:ijms19123801. [PMID: 30501048 PMCID: PMC6321044 DOI: 10.3390/ijms19123801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Liver cholestasis is a chronic liver disease and a major health problem worldwide. Cholestasis is characterised by a decrease in bile flow due to impaired secretion by hepatocytes or by obstruction of bile flow through intra- or extrahepatic bile ducts. Thereby cholestasis can induce ductal proliferation, hepatocyte injury and liver fibrosis. Notch signalling promotes the formation and maturation of bile duct structures. Here we investigated the liver regeneration process in the context of cholestasis induced by disruption of the Notch signalling pathway. Liver-specific deletion of recombination signal binding protein for immunoglobulin kappa j region (Rbpj), which represents a key regulator of Notch signalling, induces severe cholestasis through impaired intra-hepatic bile duct (IHBD) maturation, severe necrosis and increased lethality. Deregulation of the biliary compartment and cholestasis are associated with the change of several signalling pathways including a Kyoto Encyclopedia of Genes and Genomes (KEGG) gene set representing the Hippo pathway, further yes-associated protein (YAP) activation and upregulation of SRY (sex determining region Y)-box 9 (SOX9), which is associated with transdifferentiation of hepatocytes. SOX9 upregulation in cholestatic liver injury in vitro is independent of Notch signalling. We could comprehensively address that in vivo Rbpj depletion is followed by YAP activation, which influences the transdifferentiation of hepatocytes and thereby contributing to liver regeneration.
Collapse
|
11
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Wang W, Feng Y, Aimaiti Y, Jin X, Mao X, Li D. TGFβ signaling controls intrahepatic bile duct development may through regulating the Jagged1‐Notch‐Sox9 signaling axis. J Cell Physiol 2018; 233:5780-5791. [PMID: 29194611 DOI: 10.1002/jcp.26304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP. R. China
| | - Yuan Feng
- Department of Hepatobiliary SurgeryThe Second Clinical Medical College of North Sichuan Medical CollegeNanchong Central HospitalNanchongSichuanP. R. China
| | - Yasen Aimaiti
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP. R. China
| | - Xin Jin
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP. R. China
| | - Xixian Mao
- Department of Hepatobiliary SurgeryWest China‐Guang'an Hospital, Sichuan UniversityGuang'anSichuanP. R. China
| | - Dewei Li
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
13
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
He Q, Li J, Dong F, Cai C, Zou X. LKB1 promotes radioresistance in esophageal cancer cells exposed to radiation, by suppression of apoptosis and activation of autophagy via the AMPK pathway. Mol Med Rep 2017; 16:2205-2210. [DOI: 10.3892/mmr.2017.6852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 04/05/2017] [Indexed: 11/06/2022] Open
|
15
|
Jia C, Medina V, Liu C, He L, Qian D, Taojian T, Okamoto CT, Stiles BL. Crosstalk of LKB1- and PTEN-regulated signals in liver morphogenesis and tumor development. Hepatol Commun 2017; 1:153-167. [PMID: 29152604 PMCID: PMC5687583 DOI: 10.1002/hep4.1027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Liver kinase B 1 (LKB1 or STK11) and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) are two tumor suppressors that regulate the mammalian target of rapamycin signaling pathway. Deletion studies show that loss of either Lkb1 (Lkb+/–) or Pten (PtenloxP/loxP; Alb‐Cre+) leads to liver injury and development of hepatocarcinoma. In this study, we investigated the crosstalk of LKB1 and PTEN loss during tumorigenesis and liver development. We show that haplo‐insufficiency of Lkb1 in the liver leads to advanced tumor development in Pten‐null mice (PtenloxP/loxP; LkbloxP/+; Alb‐Cre+). Our analysis shows that LKB1 and PTEN interact with each other in their regulation of fatty acid synthase as well as p21 expression. The combined loss of LKB1 and PTEN (PtenloxP/loxP; LkbloxP/loxP; Alb‐Cre+) also leads to the inability to form zonal structures in the liver. The lack of metabolic zonal structures is consistent with the inability of the livers to store glycogen as well as elevated plasma bilirubin and alanine aminotransferase, indicative of liver dysfunction. These structural and functional defects are associated with cytoplasm distribution of a canalicular membrane protein multidrug resistant protein 2, which is responsible for clearing bilirubin. This observed regulation of multidrug resistant protein 2 by LKB1 likely contributes to the lack of cellular polarity and the early lethality phenotype associated with the homozygous loss of Lkb1 alone or in combination with Pten. Finally, Pten deletion does not rescue the precocious ductal plate formation reported for Lkb1‐deleted livers. Conclusion: Our study dissected the functional and molecular crosstalk of PTEN and LKB1 and elucidated key molecular targets for such interactions. (Hepatology Communications 2017;1:153‐167)
Collapse
Affiliation(s)
- Chengyou Jia
- Department of Nuclear Medicine, Central Laboratory for Medical Research, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Vivian Medina
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Chenchang Liu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Lina He
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Daohai Qian
- Department of Nuclear Medicine, Central Laboratory for Medical Research, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Tu Taojian
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Curtis T Okamoto
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Bangyan L Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033.,Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|