1
|
Tan YQ, Zhang W, Xie ZC, Li J, Chen HW. CaMK II in Cardiovascular Diseases, Especially CaMK II-δ: Friends or Enemies. Drug Des Devel Ther 2024; 18:3461-3476. [PMID: 39132626 PMCID: PMC11314529 DOI: 10.2147/dddt.s473251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) tend to affect the young population and are associated with a significant economic burden and psychological distress to the society and families. The physiological and pathological processes underlying CVDs are complex. Ca2+/calmodulin-dependent kinase II (CaMK II), a protein kinase, has multiple biological functions. It participates in multiple pathological processes and plays a central role in the development of CVDs. Based on this, this paper analyzes the structural characteristics and distribution of CaMK II, the mechanism of action of CaMK II, and the relationship between CaMK II and CVDs, including ion channels, ischemia-reperfusion injury, arrhythmias, myocardial hypertrophy, cardiotoxicity, hypertension, and dilated cardiomyopathy. Given the different regulatory mechanisms of different isoforms of CaMK II, the clinical use of specific targeted inhibitors or novel compounds should be evaluated in future research to provide new directions.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Wang Zhang
- Department of Pharmacy, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Zi-Cong Xie
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Heng-Wen Chen
- New Drug Research and Development Office, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| |
Collapse
|
2
|
Li C, Yang Y. Advancements in the study of inward rectifying potassium channels on vascular cells. Channels (Austin) 2023; 17:2237303. [PMID: 37463317 PMCID: PMC10355679 DOI: 10.1080/19336950.2023.2237303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Inward rectifier potassium channels (Kir channels) exist in a variety of cells and are involved in maintaining resting membrane potential and signal transduction in most cells, as well as connecting metabolism and membrane excitability of body cells. It is closely related to normal physiological functions of body and the occurrence and development of some diseases. Although the functional expression of Kir channels and their role in disease have been studied, they have not been fully elucidated. In this paper, the functional expression of Kir channels in vascular endothelial cells and smooth muscle cells and their changes in disease states were reviewed, especially the recent research progress of Kir channels in stem cells was introduced, in order to have a deeper understanding of Kir channels in vascular tissues and provide new ideas and directions for the treatment of related ion channel diseases.
Collapse
Affiliation(s)
- Chunshu Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Int J Mol Sci 2022; 23:ijms23158507. [PMID: 35955642 PMCID: PMC9368986 DOI: 10.3390/ijms23158507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1–3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs.
Collapse
|
4
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
5
|
Liu HJ, Li HT, Lin Y, Lu DL, Yue Y, Xiong J, Li CQ, Xu XY, Feng YG. Identification of 2 Potential Core Genes for Influence of Gut Probiotics on Formation of Intracranial Aneurysms by Bioinformatics Analysis. Med Sci Monit 2020; 26:e920754. [PMID: 32141441 PMCID: PMC7077060 DOI: 10.12659/msm.920754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Rupture of intracranial aneurysms (IA) is associated with high rates of mortality around the world. Use of intestinal probiotics can regulate the pathophysiology of aneurysms, but the details of the mechanism involved have been unclear. MATERIAL AND METHODS The GEO2R analysis website was used to detect the DEGs between IAs, AAAs, samples after supplementation with probiotics, and normal samples. The online tool DAVID provides functional classification and annotation analyses of associated genes, including GO and KEGG pathway. PPI of these DEGs was analyzed based on the STRING database, followed by analysis using Cytoscape software. RESULTS We found 170 intersecting DEGs (contained in GSE75240 and more than 2 of the 4 aneurysms datasets), 5 intersecting DEGs (contained in all datasets) and 1 intersecting DEG (contained in GSE75240 and all IAs datasets). GO analysis results suggested that the DEGs primarily participate in signal transduction, cell adhesion, immune response, response to drug, extracellular matrix organization, cell-cell signaling, and inflammatory response in the BP terms, and the KEGG pathways are mainly enriched in focal adhesion, cytokine-cytokine receptor interaction, ECM-receptor interaction, amoebiasis, chemokine signaling pathway, proteoglycans, and PI3K-Akt signaling pathway in cancer pathways. Through PPI network analysis, we confirmed 2 candidates for further study: CAV1 and MYH11. These downregulated DEGs are associated with the formation of aneurysms, and the change of these DEGs is the opposite in probiotics-treated animals. CONCLUSIONS Our study suggests that MYH11 and CAV1 are potential target genes for prevention of aneurysms. Further experiments are needed to verify these findings.
Collapse
Affiliation(s)
- Heng-Jian Liu
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Huan-Ting Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yuan Lin
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Dong-Lin Lu
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yong Yue
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jing Xiong
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Cong-Qin Li
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xiang-Yu Xu
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yu-Gong Feng
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
6
|
Binda A, Rivolta I, Villa C, Chisci E, Beghi M, Cornaggia CM, Giovannoni R, Combi R. A Novel KCNJ2 Mutation Identified in an Autistic Proband Affects the Single Channel Properties of Kir2.1. Front Cell Neurosci 2018; 12:76. [PMID: 29615871 PMCID: PMC5869910 DOI: 10.3389/fncel.2018.00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 11/29/2022] Open
Abstract
Inwardly rectifying potassium channels (Kir) have been historically associated to several cardiovascular disorders. In particular, loss-of-function mutations in the Kir2.1 channel have been reported in cases affected by Andersen-Tawil syndrome while gain-of-function mutations in the same channel cause the short QT3 syndrome. Recently, a missense mutation in Kir2.1, as well as mutations in the Kir4.1, were reported to be involved in autism spectrum disorders (ASDs) suggesting a role of potassium channels in these diseases and introducing the idea of the existence of K+ channel ASDs. Here, we report the identification in an Italian affected family of a novel missense mutation (p.Phe58Ser) in the KCNJ2 gene detected in heterozygosity in a proband affected by autism and borderline for short QT syndrome type 3. The mutation is located in the N-terminal region of the gene coding for the Kir2.1 channel and in particular in a very conserved domain. In vitro assays demonstrated that this mutation results in an increase of the channel conductance and in its open probability. This gain-of-function of the protein is consistent with the autistic phenotype, which is normally associated to an altered neuronal excitability.
Collapse
Affiliation(s)
- Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Chisci
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Cesare M Cornaggia
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
7
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Zhang H, Liu Y, Yan L, Du W, Zhang X, Zhang M, Chen H, Zhang Y, Zhou J, Sun H, Zhu D. Bone morphogenetic protein-7 inhibits endothelial-mesenchymal transition in pulmonary artery endothelial cell under hypoxia. J Cell Physiol 2017; 233:4077-4090. [PMID: 28926108 DOI: 10.1002/jcp.26195] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Pulmonary artery hypertension (PAH) is characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing α-smooth muscle actin (α-SMA) is a nearly universal finding in the remodeled artery. It has been confirmed endothelial-to-mesenchymal transition (EndoMT) may be a source of those α-SMA-expressing cells. In addition, the EndoMT is reversible. Here, we show that under hypoxia, the expression of bone morphogenetic protein 7 (BMP-7) was decreased both in vivo and in vitro. We also found that under normoxia, BMP-7 deficiency induced spontaneous EndoMT and cell migration. The hypoxia-induced EndoMT and cell migration were markedly attenuated after pretreatment with rh-BMP-7. Moreover, m-TOR phosphorylation was involved in EndoMT and BMP-7 suppressed hypoxia-induced m-TORC1 phosphorylation in pulmonary artery endothelial cells. Our results demonstrate that BMP-7 attenuates the hypoxia-induced EndoMT and cell migration by suppressing the m-TORC1 signaling pathway. Our study revealed a novel mechanism underlying the hypoxia-induced EndoMT in pulmonary artery endothelial cells and suggested a new therapeutic strategy targeting EndoMT for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hongyue Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - Ying Liu
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - Lixin Yan
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - Wei Du
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province, China
| | - Xiaodan Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province, China
| | - Min Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - He Chen
- Department of Obstetrics and gynecology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yafeng Zhang
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Jianqiu Zhou
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Hanliang Sun
- Medical Laboratory Technology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| |
Collapse
|
9
|
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311:C462-78. [PMID: 27306369 DOI: 10.1152/ajpcell.00341.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
Abstract
First characterized in neuronal tissues, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key signaling component in several mammalian biological systems. Its unique capacity to integrate various Ca(2+) signals into different specific outcomes is a precious asset to excitable and nonexcitable cells. Numerous studies have reported roles and mechanisms involving CaMKII in brain and heart tissues. However, corresponding functions in vascular cell types (endothelium and vascular smooth muscle cells) remained largely unexplored until recently. Investigation of the intracellular Ca(2+) dynamics, their impact on vascular cell function, the regulatory processes involved and more recently the spatially restricted oscillatory Ca(2+) signals and microdomains triggered significant interest towards proteins like CaMKII. Heteromultimerization of CaMKII isoforms (four isoforms and several splice variants) expands this kinase's peculiar capacity to decipher Ca(2+) signals and initiate specific signaling processes, and thus controlling cellular functions. The physiological functions that rely on CaMKII are unsurprisingly diverse, ranging from regulating contractile state and cellular proliferation to Ca(2+) homeostasis and cellular permeability. This review will focus on emerging evidence of CaMKII as an essential component of the vascular system, with a focus on the kinase isoform/splice variants and cellular system studied.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Molecular and Integrative Physiology, Université de Montréal, Montreal Quebec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montreal Quebec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal Quebec, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and
| |
Collapse
|