1
|
Sorrentino ZA, Riklan J, Lloyd GM, Lucke-Wold BP, Mampre D, Quintin S, Zakare-Fagbamila R, Still M, Chandra V, Foote KD, Giasson BI, Hilliard JD. Neuronal tissue collection from intra-cranial instruments used in deep brain stimulation surgery for Parkinson's disease with implications for study of alpha-synuclein. Sci Rep 2024; 14:21641. [PMID: 39284884 PMCID: PMC11405830 DOI: 10.1038/s41598-024-72542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Alpha-synuclein (αSyn) forms pathologic aggregates in Parkinson's disease (PD) and is implicated in mechanisms underlying neurodegeneration. While pathologic αSyn has been extensively studied, there is currently no method to evaluate αSyn within the brains of living patients. Patients with PD are often treated with deep brain stimulation (DBS) surgery in which surgical instruments are in direct contact with neuronal tissue; herein, we describe a method by which tissue is collected from DBS surgical instruments in PD and essential tremor (ET) patients and demonstrate that αSyn is detected. 24 patients undergoing DBS surgery for PD (17 patients) or ET (7 patients) were enrolled; from patient samples, 81.2 ± 44.8 µg of protein (n = 15), on average, was collected from surgical instruments. Light microscopy revealed axons, capillaries, and blood cells as the primary components of purified tissue (n = 3). ELISA assay further confirmed the presence of neuronal and glial tissue in DBS samples (n = 4). Further analysis was conducted using western blot, demonstrating that multiple αSyn antibodies are reactive in PD (n = 5) and ET (n = 3) samples; truncated αSyn (1-125 αSyn) was significantly increased in PD (n = 5) compared to ET (n = 3), in which αSyn misfolding is not expected (0.64 ± 0.25 vs. 0.25 ± 0.12, P = 0.046), thus showing that multiple forms of αSyn can be detected from living PD patients with this method.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA.
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Joshua Riklan
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Grace M Lloyd
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Brandon P Lucke-Wold
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - David Mampre
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Stephan Quintin
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rasheedat Zakare-Fagbamila
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Megan Still
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Vyshak Chandra
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kelly D Foote
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Benoit I Giasson
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Justin D Hilliard
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
2
|
Sorrentino Z, Riklan J, Lloyd G, Lucke-Wold B, Mampre D, Quintin S, Zakare-Fagbamila R, Still M, Chandra V, Foote K, Giasson B, Hilliard J. Analysis of alpha-synuclein harvested from intracranial instruments used in deep brain stimulation surgery for Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-4369598. [PMID: 38826474 PMCID: PMC11142310 DOI: 10.21203/rs.3.rs-4369598/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alpha-synuclein (αSyn) forms pathologic aggregates in Parkinson's disease (PD) and is implicated in mechanisms underlying neurodegeneration. While pathologic αSyn has been extensively studied, there is currently no method to evaluate αSyn within the brains of living patients. Patients with PD are often treated with deep brain stimulation (DBS) surgery in which surgical instruments are in direct contact with neuronal tissue; herein, we describe a method by which tissue is purified from DBS surgical instruments in PD and essential tremor (ET) patients and demonstrate that αSyn is robustly detected. 24 patients undergoing DBS surgery for PD (17 patients) or ET (7 patients) were enrolled; from patient samples, 81.2 ± 44.8 μg protein (n=15) is able to be purified, with immunoblot assays specific for αSyn reactive in all tested samples. Light microscopy revealed axons and capillaries as the primary components of purified tissue (n=3). Further analysis was conducted using western blot, demonstrating that truncated αSyn (1-125 αSyn) was significantly increased in PD (n=5) compared to ET (n=3), in which αSyn misfolding is not expected (0.64 ± 0.25 vs. 0.25 ± 0.12, P = 0.046), thus showing that pathologic αSyn can be reliably purified from living PD patients with this method.
Collapse
|
3
|
Patel MD, Patel M, Jani R, Patel KG, Patel P, Gandhi SK. Essential Tremors: A Literature Review of Current Therapeutics. Cureus 2024; 16:e59451. [PMID: 38826876 PMCID: PMC11141324 DOI: 10.7759/cureus.59451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Essential tremors (ETs) commonly manifest as involuntary shaking of the hands that disrupt daily activities. These tremors involve the central motor network of the cerebellum, thalamus, and cortical networks, leading to different clinical phenotypes. The goal of this review was to establish evidence-based recommendations for effective care and simplify decisions for those dealing with ET. For this narrative literature review, we conducted a thorough search using core keywords such as "essential tremor" and "therapy." From the 27 selected articles, relevant data were presented regarding pathophysiology, medications, and other treatment options, with necessary supplemental data such as side effects and use cases. This paper examines treatments for ET, including commonly prescribed medications such as propranolol and primidone; invasive treatments such as deep brain stimulation, focused ultrasound thalamotomy, transcranial magnetic stimulation, and some surgical methods; and non-invasive methods such as the neuromodulation technique of transcutaneous afferent patterned stimulation. Overall, this study presents a synthesized understanding of the currently available modalities for managing ETs. It is intended to guide care providers in choosing the best possible method to contain symptoms.
Collapse
Affiliation(s)
- Maurya D Patel
- Department of Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand (NHL) Municipal Medical College, Ahmedabad, IND
| | - Muskaan Patel
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackeray Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, IND
| | - Rutva Jani
- Department of Internal Medicine, C.U. Shah Medical College and Hospital, Surendranagar, IND
| | - Kishan G Patel
- Department of Internal Medicine, B.J. Medical College, Ahmedabad, IND
| | - Priyansh Patel
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| | - Siddharth Kamal Gandhi
- Department of Internal Medicine, M.P. Shah Government Medical College, Jamnagar, Jamnagar, IND
| |
Collapse
|
4
|
Abedpour N, Javanmard MZ, Karimipour M, Farjah GH. Chlorogenic acid improves functional potential of follicles in mouse whole ovarian tissues in vitro. Mol Biol Rep 2022; 49:10327-10338. [PMID: 36097112 DOI: 10.1007/s11033-022-07793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chlorogenic acid (CGA) is one of the well-known polyphenol compounds possessing several important biological and therapeutic functions. In order to optimize a culture system to achieve complete development of follicles, we focused on the effects of CGA supplementation during in vitro culture (IVC) on follicular development, oxidative stress, antioxidant capacity, developmental gene expression, and functional potential in cultured mouse ovarian tissue. METHODS AND RESULTS The collected whole murine ovaries were randomly divided into four groups: (1) non-cultured group (control 1) with 7-day-old mouse ovaries, (2) non-cultured group (control 2) with 14-day-old mouse ovaries, (3) cultured group (experimental 1) with the culture plates containing only the basic culture medium, (4) cultured group (experimental 2) with the culture plates containing basic culture medium + CGA (50, 100 and 200 µmol/L CGA). Afterward, histological evaluation, biochemical analyses, the expression assessment of genes related to follicular development and apoptosis as well as the analysis of 17-β-estradiol were performed. The results showed that supplementation of ovarian tissue with the basic culture media using CGA (100 µmol/l) significantly increased the survival, developmental and functional potential of follicles in whole mouse ovarian tissues after 7 days of culture. Furthermore, CGA (100 µmol/L) attenuated oxidative damage and enhanced the concentration of antioxidant capacity along with developmental gene expression. CONCLUSION It seems that supplementation of ovarian tissue with culture media using CGA could optimize follicular growth and development in the culture system.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholam Hossein Farjah
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Fan H, Bai Y, Yin Z, An Q, Xu Y, Gao Y, Meng F, Zhang J. Which one is the superior target? A comparison and pooled analysis between posterior subthalamic area and ventral intermediate nucleus deep brain stimulation for essential tremor. CNS Neurosci Ther 2022; 28:1380-1392. [PMID: 35687507 PMCID: PMC9344089 DOI: 10.1111/cns.13878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/14/2023] Open
Abstract
Background/Aims The efficacy and safety of posterior subthalamic area (PSA) and ventral intermediate nucleus (VIM) deep brain stimulation (DBS) in the treatment of essential tremor (ET) have not been compared in large‐scale studies. We conducted a secondary analysis to identify the superior target of ET‐DBS treatment. Methods PubMed, Embase, Cochrane Library, and Google Scholar were searched for relevant studies before September 2021. The tremor‐suppression efficacy and rate of stimulation‐related complications (SRCR) after PSA‐DBS and VIM‐DBS treating ET were quantitatively compared. Secondary outcomes, including tremor subitem scores and quality of life results, were also analyzed. Subgroup analyses were further conducted to stratify by follow‐up (FU) periods and stimulation lateralities. This study was registered in Open Science Framework (DOI: 10.17605/OSF.IO/7VJQ8). Results A total of 23 studies including 122 PSA‐DBS patients and 326 VIM‐DBS patients were analyzed. The average follow‐up time was 12.81 and 14.66 months, respectively. For the percentage improvement of total tremor rating scale (TRS) scores, PSA‐DBS was significantly higher, when compared to VIM‐DBS in the sensitivity analysis (p = 0.030) and main analysis (p = 0.043). The SRCR after VIM‐DBS was higher than that of PSA‐DBS (p = 0.022), and bilateral PSA‐DBS was significantly superior to both bilateral and unilateral VIM‐DBS (p = 0.001). Conclusions This study provided level IIIa evidence that PSA‐DBS was more effective and safer for ET than VIM‐DBS in 12–24 months, although both PSA‐DBS and VIM‐DBS were effective in suppressing tremor in ET patients. Further prospective large‐scale randomized clinical trials are warranted in the future.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
6
|
Bai Y, Yin Z, Diao Y, Hu T, Yang A, Meng F, Zhang J. Loss of long-term benefit from VIM-DBS in essential tremor: A secondary analysis of repeated measurements. CNS Neurosci Ther 2021; 28:279-288. [PMID: 34866345 PMCID: PMC8739044 DOI: 10.1111/cns.13770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
AIMS Deep brain stimulation (DBS) in the ventral intermediate nucleus (Vim-DBS) is the preferred surgical therapy for essential tremor (ET). Tolerance and disease progression are considered to be the two main reasons underlying the loss of long-term efficacy of Vim-DBS. This study aimed to explore whether Vim-DBS shows long-term loss of efficacy and to evaluate the reasons for this diminished efficacy from different aspects. METHODS In a repeated-measures meta-analysis of 533 patients from 18 studies, Vim-DBS efficacy was evaluated at ≤6 months, 7-12 months, 1-3 years, and ≥4 years. The primary outcomes were the score changes in different components of the Fahn-Tolosa-Marin Tremor Rating Scale (TRS; total score, motor score, hand-function score, and activities of daily living [ADL] score). Secondary outcomes were the long-term predictive factors. RESULTS The TRS total, motor, and ADL scores showed significant deterioration with disease progression (p = 0.002, p = 0.047, and p < 0.001, respectively), while the TRS total (p < 0.001), hand-function (p = 0.036), and ADL (p = 0.004) scores indicated a significant long-term reduction in DBS efficacy, although the motor subscore indicated no loss of efficacy. Hand-function (p < 0.001) and ADL (p = 0.028) scores indicated DBS tolerance, while the TRS total and motor scores did not. Stimulation frequency and preoperative score were predictive factors for long-term results. CONCLUSION This study provides level 3a evidence that long-term Vim-DBS is effective in controlling motor symptoms without waning benefits. The efficacy reduction for hand function was caused by DBS tolerance, while that for ADL was caused by DBS tolerance and disease progression. More attention should be given to actual functional recovery rather than changes in motor scores in patients with ET.
Collapse
Affiliation(s)
- Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yu Diao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
7
|
Abstract
Deep brain stimulation is now the most common surgical treatment of tremor. Tremor can be classified as action or resting tremor and is one of the most common movement disorders. Initial treatment of tremor should focus on medical treatment but, if patients fail medical therapy, deep brain stimulation should be considered with likely success. The usual target is the ventral intermediate nucleus of the thalamus. Common side effects of treatment include paresthesias, dysarthria, and less often ataxia. Future directions of research and development, including directional leads and closed-loop stimulation, may eventually lead to additional improvement in patient outcomes.
Collapse
Affiliation(s)
- Wendell Lake
- University of Wisconsin-Madison, 600 Highland Avenue, Box 8660, Madison, WI 53792, USA
| | - Peter Hedera
- Vanderbilt University Medical Center, 645 21st Avenue South, Nashville, TN 37240, USA
| | - Peter Konrad
- Vanderbilt University Medical Center, Room 4333, VAV, 1500 21st Avenue, Nashville, TN 37212, USA.
| |
Collapse
|
8
|
Middlebrooks EH, Tuna IS, Almeida L, Grewal SS, Wong J, Heckman MG, Lesser ER, Bredel M, Foote KD, Okun MS, Holanda VM. Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. NEUROIMAGE-CLINICAL 2018; 20:1266-1273. [PMID: 30318403 PMCID: PMC6308387 DOI: 10.1016/j.nicl.2018.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
Objectives Traditional targeting methods for thalamic deep brain stimulation (DBS) performed to address tremor have predominantly relied on indirect atlas-based methods that focus on the ventral intermediate nucleus despite known variability in thalamic functional anatomy. Improvements in preoperative targeting may help maximize outcomes and reduce thalamic DBS–related complications. In this study, we evaluated the ability of thalamic parcellation with structural connectivity–based segmentation (SCBS) to predict tremor improvement following thalamic DBS. Methods In this retrospective analysis of 40 patients with essential tremor, hard segmentation of the thalamus was performed by using probabilistic tractography to assess structural connectivity to 7 cortical targets. The volume of tissue activated (VTA) was modeled in each patient on the basis of the DBS settings. The volume of overlap between the VTA and the 7 thalamic segments was determined and correlated with changes in preoperative and postoperative Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores by using multivariable linear regression models. Results A significant association was observed between greater VTA in the supplementary motor area (SMA) and premotor cortex (PMC) thalamic segment and greater improvement in TRS score when considering both the raw change (P = .001) and percentage change (P = .011). In contrast, no association was observed between change in TRS score and VTA in the primary motor cortex thalamic segment (P ≥ .19). Conclusions Our data suggest that greater VTA in the thalamic SMA/PMC segment during thalamic DBS was associated with significant improvement in TRS score in patients with tremor. These findings support the potential role of thalamic SCBS as an independent predictor of tremor improvement in patients who receive thalamic DBS. Pre-operative connectivity data may improve thalamic DBS targeting for tremor. Tremor control was positively correlated with connectivity-based thalamic segmentation. Stimulation of the SMA/PMC connected thalamic region correlated with tremor control.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Ibrahim S Tuna
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida, Gainesville, FL, USA; Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Sanjeet S Grewal
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Wong
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth R Lesser
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelly D Foote
- Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA; Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Vanessa M Holanda
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA; Center of Neurology and Neurosurgery Associates (NeuroCENNA), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Abstract
INTRODUCTION Essential tremor is the most common form of pathologic tremor. Surgical therapies disrupt tremorogenic oscillation in the cerebellothalamocortical pathway and are capable of abolishing severe tremor that is refractory to available pharmacotherapies. Surgical methods are raspidly improving and are the subject of this review. Areas covered: A PubMed search on 18 January 2018 using the query essential tremor AND surgery produced 839 abstracts. 379 papers were selected for review of the methods, efficacy, safety and expense of stereotactic deep brain stimulation (DBS), stereotactic radiosurgery (SRS), focused ultrasound (FUS) ablation, and radiofrequency ablation of the cerebellothalamocortical pathway. Expert commentary: DBS and SRS, FUS and radiofrequency ablations are capable of reducing upper extremity tremor by more than 80% and are far more effective than any available drug. The main research questions at this time are: 1) the relative safety, efficacy, and expense of DBS, SRS, and FUS performed unilaterally and bilaterally; 2) the relative safety and efficacy of thalamic versus subthalamic targeting; 3) the relative safety and efficacy of atlas-based versus direct imaging tractography-based anatomical targeting; and 4) the need for intraoperative microelectrode recordings and macroelectrode stimulation in awake patients to identify the optimum anatomical target. Randomized controlled trials are needed.
Collapse
Affiliation(s)
- Rodger J Elble
- a Neuroscience Institute , Southern Illinois University School of Medicine , Springfield , Illinois , USA
| | - Ludy Shih
- b Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts USA
| | - Jeffrey W Cozzens
- a Neuroscience Institute , Southern Illinois University School of Medicine , Springfield , Illinois , USA
| |
Collapse
|
10
|
Middlebrooks EH, Holanda VM, Tuna IS, Deshpande HD, Bredel M, Almeida L, Walker HC, Guthrie BL, Foote KD, Okun MS. A method for pre-operative single-subject thalamic segmentation based on probabilistic tractography for essential tremor deep brain stimulation. Neuroradiology 2018; 60:303-309. [PMID: 29307012 DOI: 10.1007/s00234-017-1972-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE Deep brain stimulation is a common treatment for medication-refractory essential tremor. Current coordinate-based targeting methods result in variable outcomes due to variation in thalamic structure and the optimal patient-specific functional location. The purpose of this study was to compare the coordinate-based pre-operative targets to patient-specific thalamic segmentation utilizing a probabilistic tractography methodology. METHODS Using available diffusion MRI of 32 subjects from the Human Connectome Project database, probabilistic tractography was performed. Each thalamic voxel was coded based on one of six predefined cortical targets. The segmentation results were analyzed and compared to a 2-mm spherical target centered at the coordinate-based location of the ventral intermediate thalamic nucleus. RESULTS The traditional coordinate-based target had maximal overlap with the junction of the region most connected to primary motor cortex (M1) (36.6 ± 25.7% of voxels on left; 58.1 ± 28.5% on right) and the area connected to the supplementary motor area/premotor cortex (SMA/PMC) (44.9 ± 21.7% of voxels on left; 28.9 ± 22.2% on right). There was a within-subject coefficient of variation from right-to-left of 69.4 and 63.1% in the volume of overlap with the SMA/PMC and M1 regions, respectively. CONCLUSION Thalamic segmentation based on structural connectivity measures is a promising technique that may enhance traditional targeting methods by generating reproducible, patient-specific pre-operative functional targets. Our results highlight the problematic intra- and inter-subject variability of indirect, coordinate-based targets. Future prospective clinical studies will be needed to validate this targeting methodology in essential tremor patients.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Vanessa M Holanda
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,Center of Neurology and Neurosurgery Associates (CENNA), Beneficência Portuguesa of São Paulo Hospital, São Paulo, Brazil
| | - Ibrahim S Tuna
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | | | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Higuchi MA, Martinez-Ramirez D, Morita H, Topiol D, Bowers D, Ward H, Warren L, DeFranco M, Hicks JA, Hegland KW, Troche MS, Kulkarni S, Hastings E, Foote KD, Okun MS. Interdisciplinary Parkinson's Disease Deep Brain Stimulation Screening and the Relationship to Unintended Hospitalizations and Quality of Life. PLoS One 2016; 11:e0153785. [PMID: 27159519 PMCID: PMC4861342 DOI: 10.1371/journal.pone.0153785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the impact of pre-operative deep brain stimulation (DBS) interdisciplinary assessments on post-operative hospitalizations and quality of life (QoL). Background DBS has been utilized successfully in Parkinson’s disease (PD) for the treatment of tremor, rigidity, bradykinesia, off time, and motor fluctuations. Although DBS is becoming a more common management approach there are no standardized criteria for selection of DBS candidates, and sparse data exist to guide the use of interdisciplinary evaluations for DBS screening. We reviewed the outcomes of the use of an interdisciplinary model which utilized seven specialties to pre-operatively evaluate potential DBS candidates. Methods The University of Florida (UF) INFORM database was queried for PD patients who had DBS implantations performed at UF between January 2011 and February 2013. Records were reviewed to identify unintended hospitalizations, falls, and infections. Minor and major concerns or reservations from each specialty were previously documented and quantified. Clinical outcomes were assessed through the use of the Parkinson disease quality of life questionnaire (PDQ-39), and the Unified Parkinson’s Disease Rating Score (UPDRS) Part III. Results A total of 164 cases were evaluated for possible DBS candidacy. There were 133 subjects who were approved for DBS surgery (81%) following interdisciplinary screening. There were 28 cases (21%) who experienced an unintended hospitalization within the first 12 months following the DBS operation. The patients identified during interdisciplinary evaluation with major or minor concerns from any specialty service had more unintended hospitalizations (93%) when compared to those without concerns (7%). When the preoperative “concern” shifted from “major” to “minor” to “no concerns,” the rate of hospitalization decreased from 89% to 33% to 3%. A strong relationship was uncovered between worsened PDQ-39 at 12 months and increased hospitalization. Conclusions Unintended hospitalizations and worsened QOL scores correlated with the number and severity of concerns raised by interdisciplinary DBS evaluations. The data suggest that detailed screenings by interdisciplinary teams may be useful for more than just patient selection. These evaluations may help to stratify risk for post-operative hospitalization and QoL outcomes.
Collapse
Affiliation(s)
- Masa-aki Higuchi
- Department of Neurology, University of Florida College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Daniel Martinez-Ramirez
- Department of Neurology, University of Florida College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Hokuto Morita
- Department of Neurology, University of Florida College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Dan Topiol
- Department of Neurology, University of Florida College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Herbert Ward
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Lisa Warren
- Rehabilitation Services, University Florida Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Meredith DeFranco
- Rehabilitation Services, University Florida Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Julie A. Hicks
- Department of Speech, Language, and Hearing Sciences, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Karen W. Hegland
- Department of Speech, Language, and Hearing Sciences, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Michelle S. Troche
- Department of Speech, Language, and Hearing Sciences, University of Florida College of Public Health and Health Professions, Gainesville, Florida, United States of America
| | - Shankar Kulkarni
- Rehabilitation Services, University Florida Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Erin Hastings
- Department of Neurology, University of Florida College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
| | - Kelly D. Foote
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Michael S. Okun
- Department of Neurology, University of Florida College of Medicine, Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|