1
|
Pu D, Chen H, Fu W, Cui Y, Shu K. Combining E-ice-COLD-PCR and Pyrosequencing with Di-Base Addition (PDBA) Enables Sensitive Detection of Low-Abundance Mutations. Appl Biochem Biotechnol 2024; 196:4049-4066. [PMID: 37864708 DOI: 10.1007/s12010-023-04718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/23/2023]
Abstract
Detecting low-abundance mutations is of particular interest in the fields of biology and medical science. However, most currently available molecular assays have limited sensitivity for the detection of low-abundance mutations. Here, we established a platform for detecting low-level DNA mutations with high sensitivity and accuracy by combining enhanced-ice-COLD-PCR (E-ice-COLD-PCR) and pyrosequencing with di-base addition (PDBA). The PDBA assay was performed by selectively adding one di-base (AG, CT, AC, GT, AT, or GC) instead of one base (A, T, C, or G) into the reaction at a time during sequencing primer extension and thus enabling to increase the sequencing intensity. A specific E-ice-COLD-PCR/PDBA assay was developed for the detection of the most frequent BRAF V600E mutation to verify the feasibility of our method. E-ice-COLD-PCR/PDBA assay permitted the reliable detection of down to 0.007% of mutant alleles in a wild-type background. Furthermore, it required only a small amount of starting material (20 pg) to sensitively detect and identify low-abundance mutations, thus increasing the screening capabilities in limited DNA material. The E-ice-COLD-PCR/PDBA assay was applied in the current study to clinical formalin-fixed paraffin-embedded (FFPE) and plasma samples, and it enabled the detection of BRAF V600E mutations in samples that appeared as a wild type using PCR/conventional pyrosequencing (CP) and E-ice-COLD-PCR/CP. E-ice-COLD-PCR/PDBA assay is a rapid, cost-effective, and highly sensitive method that could improve the detection of low-abundance mutations in routine clinical use.
Collapse
Affiliation(s)
- Dan Pu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Huimin Chen
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| |
Collapse
|
2
|
Allele-Specific PCR for KRAS Mutation Detection Using Phosphoryl Guanidine Modified Primers. Diagnostics (Basel) 2020; 10:diagnostics10110872. [PMID: 33114622 PMCID: PMC7692470 DOI: 10.3390/diagnostics10110872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Establishing the Kirsten rat sarcoma (KRAS) mutational status is essential in terms of managing patients with various types of cancer. Allele-specific real-time polymerase chain reaction (AS-PCR) is a widely used method for somatic mutations detection. To improve the limited sensitivity and specificity, several blocking methods have been introduced in AS-PCR to block the amplification of wild-type templates. Herein, we used a novel modified oligonucleotide with internucleotide phosphates reshaped 1,3-dimethyl-2-imino-imidazolidine moieties (phosphoryl guanidine (PG) groups) as primers and blockers in the AS-PCR method. Four common KRAS mutations were chosen as a model to demonstrate the advantages of the PG primers and blockers utilizing a customized PCR protocol. The methods were evaluated on plasmid model systems providing a KRAS mutation detection limit of 20 copies of mutant DNA in a proportion as low as 0.1% of the total DNA, with excellent specificity. PG-modification can serve as the universal additional mismatch-like disturbance to increase the discrimination between wild-type and mutated DNA. Moreover, PG can serve to increase primer specificity by a synergetic effect with additional mismatch and would greatly facilitate medical research.
Collapse
|
3
|
Fouz MF, Appella DH. PNA Clamping in Nucleic Acid Amplification Protocols to Detect Single Nucleotide Mutations Related to Cancer. Molecules 2020; 25:molecules25040786. [PMID: 32059456 PMCID: PMC7070360 DOI: 10.3390/molecules25040786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/02/2023] Open
Abstract
This review describes the application of peptide nucleic acids (PNAs) as clamps that prevent nucleic acid amplification of wild-type DNA so that DNA with mutations may be observed. These methods are useful to detect single-nucleotide polymorphisms (SNPs) in cases where there is a small amount of mutated DNA relative to the amount of normal (unmutated/wild-type) DNA. Detecting SNPs arising from mutated DNA can be useful to diagnose various genetic diseases, and is especially important in cancer diagnostics for early detection, proper diagnosis, and monitoring of disease progression. Most examples use PNA clamps to inhibit PCR amplification of wild-type DNA to identify the presence of mutated DNA associated with various types of cancer.
Collapse
|
4
|
Ren XD, Liu DY, Guo HQ, Wang L, Zhao N, Su N, Wei K, Ren S, Qu XM, Dai XT, Huang Q. Sensitive detection of low-abundance in-frame deletions in EGFR exon 19 using novel wild-type blockers in real-time PCR. Sci Rep 2019; 9:8276. [PMID: 31164704 PMCID: PMC6547704 DOI: 10.1038/s41598-019-44792-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/24/2019] [Indexed: 01/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are associated with response of tyrosine kinase inhibitors (TKIs) for patients with advanced non-small cell lung cancer (NSCLC). However, the existing methods for detection of samples having rare mutations(i.e. ~0.01%) have limits in terms of specificity, time consumption or cost. In the current study, novel wild-type blocking (WTB) oligonucleotides modified with phosphorothioate or inverted dT at the 5'-termini were designed to precisely detect 11 common deletion mutations in exon 19 of EGFR gene (E19del) using a WTB-PCR assay. And internal competitive leptin amplifications were further applied to enhance the specificity of the WTB-PCR system. Our results showed that WTB-PCR could completely block amplification of wild-type EGFR when 200 ng of DNA was used as template. Furthermore, the current WTB-PCR assay facilitated the detection of E19del mutations with a selectivity of 0.01% and sensitivity as low as a single copy. And, the results showed that the current WTB-PCR system exceeded detection limits afforded by the ARMS-PCR assay. In conclusion, the current WTB-PCR strategy represents a simple and cost-effective method to precisely detect various low-abundance deletion mutations.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Ding-Yuan Liu
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Hai-Qin Guo
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Liu Wang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Sai Ren
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Xiao-Tian Dai
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China.
| |
Collapse
|
5
|
Su N, Wei K, Zhao N, Wang L, Duan GJ, Ren XD, Qu XM, Huang Q. Sensitive and selective detections of codon 12 and 13 KRAS mutations in a single tube using modified wild-type blocker. Clin Chim Acta 2019; 494:123-131. [PMID: 30902586 DOI: 10.1016/j.cca.2019.03.1618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
It was hypothesized that in the WTB-PCR system, the greater number of cycles, associated with the thermodynamic driving force of DNA polymerase resulted in artificial introduction of mutant nucleotides in amplicons. In the current study, universal WTB-PCR was developed to overcome these limitations, in which two strategies were used: phosphorothioate modifications were made at the 5'-termini bases of the WTB oligonucleotides, and amplification of referenced internal positive controller (RIPC) fragments was performed. The results showed that universal WTB-PCR could detect single-copy KRAS mutant alleles with higher selectivity (i.e., 0.01%), and with greater ability to eliminate non-specific amplification of KRAS wild-type alleles in amounts up to 200 ng. Moreover, the introduction of referenced internal positive controller (RIPC) fragments prevented false-negative results caused by inadequate amounts of input sample DNA, and allowed for quantitative analysis of the mutation levels in each FFPE sample. In clinical application in 50 samples of FFPE tissue sections from mCRC patients, 70% (35/50) showed various mutations at codons 12 and 13 of KRAS genes; 30% (15/50) could be detected by traditional PCR without WTB oligonucleotides. In conclusion, universal WTB-PCR is a rapid, simple and low-cost method for detection of low-abundance KRAS mutations in mCRC patients.
Collapse
Affiliation(s)
- Ning Su
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.; Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Kun Wei
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liu Wang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Guang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.; Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Qing Huang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China.; Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.; Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Yang Z, Zhao N, Chen D, Wei K, Su N, Huang JF, Xu HQ, Duan GJ, Fu WL, Huang Q. Improved detection of BRAF V600E using allele-specific PCR coupled with external and internal controllers. Sci Rep 2017; 7:13817. [PMID: 29061997 PMCID: PMC5653796 DOI: 10.1038/s41598-017-14140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/06/2017] [Indexed: 01/29/2023] Open
Abstract
Although traditional allele-specific PCR (tAS-PCR) is a common screening method for BRAF V600E mutations, its lower amplification specificity and mutation selectivity have limited its clinical applications. We hypothesize that these limitations are associated with the weaker specificities of allele-specific primers and the thermodynamic driving forces of DNA polymerase. We used three strategies to circumvent these limitations, namely, modifying allele-specific primers, introducing a competitive external allele-specific controller (i.e., cAS-PCR), and introducing a referenced internal positive controller in the cAS-PCR (i.e., rcAS-PCR). The amplification sensitivities and specificities were influenced by the position of the artificially introduced mismatched nucleotide in the allele-specific primers. Moreover, both cAS-PCR and rcAS-PCR could detect single-copy BRAF V600E alleles with higher mutation selectivity (0.1%) than tAS-PCR. In addition, cAS-PCR eliminated false-negative results caused by various PCR inhibitors that might be present in the DNA solutions. The rcAS-PCR could also be employed to avoid the false-negative results caused by low-abundance input templates in cAS-PCR. In conclusion, rcAS-PCR provides a rapid, simple, and low-cost method for detecting low levels of the mutated BRAF V600E gene.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Dong Chen
- Department of Laboratory Medicine; 302 hospital of PLA, Chongqing, 100039, P. R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ning Su
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jun-Fu Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Han-Qing Xu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Guang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Wei-Ling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China.
| |
Collapse
|
7
|
Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics. Oncotarget 2017; 8:83860-83871. [PMID: 29137388 PMCID: PMC5663560 DOI: 10.18632/oncotarget.20038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs.
Collapse
|
8
|
Peng J, Wei K, Zhao X, Yang K, Wang H, Zhang Y, Guo M, He J, Wu H, Li Y, Zhao N, Huang Q, Fu W. Wild‑type blocking pcr coupled with internal competitive amplified fragment improved the detection of rare mutation of KRAS. Mol Med Rep 2017; 16:2726-2732. [PMID: 28677778 PMCID: PMC5547944 DOI: 10.3892/mmr.2017.6883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023] Open
Abstract
Mutant KRAS proto-oncogene GTPase (KRAS) serves an important role in predicting the development, diagnosis, treatment and efficacy of targeted drug therapies for colorectal cancer. To improve the detection efficacy of trace amount of mutant KRAS, the locked nucleic acid-based method was modified in the present study. Internal competitive amplification fragments were used to improve the inhibition of wild-type KRAS with a wild-type blocking (WTB) probe and specifically amplify the trace amounts of mutant KRAS. The modified method, quantitative clamp-based polymerase chain reaction technology using WTB coupled with internal competitive reference to enhance the amplification specificity, named WIRE-PCR, completely blocked the amplification of wild-type KRAS in 50–150 ng DNA templates. The added internal competitive amplified fragments were amplified together with the target gene, which were used to reduce base mismatch due to the high number of cycles in PCR and quantify the total amount of DNA. The results demonstrated that WIRE-PCR facilitated the detection of mutated alleles at a single molecular level. In the colorectal biopsies from 50 patients with suspected colorectal cancer, 18 cases (36%) contained mutant KRAS, and the amount of mutant DNA accounted for 18.6–64.2% of the total DNA. WIRE-PCR is a simple, rapid and low-cost quantitative analysis method for the detection of trace amounts of the mutant KRAS.
Collapse
Affiliation(s)
- Jia Peng
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiang Zhao
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Ke Yang
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Huan Wang
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yang Zhang
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Mei Guo
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Jing He
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Haiyan Wu
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yongchuan Li
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|