1
|
Roca-Ayats N, Maceda I, Bruque CD, Martínez-Gil N, Garcia-Giralt N, Cozar M, Mellibovsky L, Van Hul W, Lao O, Grinberg D, Balcells S. Evolutionary and functional analyses of LRP5 in archaic and extant modern humans. Hum Genomics 2024; 18:53. [PMID: 38802968 PMCID: PMC11131306 DOI: 10.1186/s40246-024-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first β-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Iago Maceda
- CNAG, Centre Nacional d'Analisi Genòmic, C/ Baldiri I Reixach 4, 08028, Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate - S.A.M.I.C., Santa Cruz, Argentina
| | - Núria Martínez-Gil
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Departament de Genètica, Microbiologia i Estadística, UB, Barcelona, Spain
| | - Mónica Cozar
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, 2650, Antwerp, Belgium
| | - Oscar Lao
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Daniel Grinberg
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Susanna Balcells
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| |
Collapse
|
2
|
Murphy D, Karatzias T, Busuttil W, Greenberg N, Shevlin M. ICD-11 posttraumatic stress disorder (PTSD) and complex PTSD (CPTSD) in treatment seeking veterans: risk factors and comorbidity. Soc Psychiatry Psychiatr Epidemiol 2021; 56:1289-1298. [PMID: 33464398 DOI: 10.1007/s00127-021-02028-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Emerging evidence suggests that ICD-11 CPTSD is a more common condition than PTSD in treatment seeking samples although no study has explored risk factors and comorbidities of PTSD and CPTSD in veteran populations. In this study, risk factors and comorbidity between veterans meeting criteria for PTSD or CPTSD using the ICD-11 International Trauma Questionnaire (ITQ) were explored. METHODS A sample of help-seeking veterans who had been diagnosed with a mental health difficulty (n = 177) was recruited. Participants completed a range of mental health and functioning measures. Multinomial logistic regression analysis was conducted to explore differences in the above factors between participants meeting case criteria for PTSD, CPTSD or another mental health disorder. RESULTS Those with CPTSD appeared to have taken longer to seek help, reported higher rates of childhood adversity and more experiences of emotional or physical bullying during their military careers. Further, participants with CPTSD reported a greater burden of comorbid mental health difficulties including high levels of dissociation, anger, difficulties related to moral injury and common mental health difficulties and greater degree of impairment including social isolation, sleep difficulties and impaired functioning. CONCLUSIONS Considering that CPTSD is a more debilitating condition than PTSD, there is now an urgent need to test the effectiveness of new and existing interventions in veterans with CPTSD.
Collapse
Affiliation(s)
- Dominic Murphy
- Combat Stress, Research Department, Tyrwhitt House, Oaklawn Rd, Leatherhead, KT22 0BX, UK. .,King's Centre for Military Health Research, King's College London, London, UK.
| | - Thanos Karatzias
- School of Health and Social Care, Edinburgh Napier University, Edinburgh, UK.,NHS Lothian Rivers Centre for Traumatic Stress, Edinburgh, UK
| | - Walter Busuttil
- Combat Stress, Research Department, Tyrwhitt House, Oaklawn Rd, Leatherhead, KT22 0BX, UK
| | - Neil Greenberg
- King's Centre for Military Health Research, King's College London, London, UK
| | - Mark Shevlin
- School of Psychology, Ulster University, Derry, NI, UK
| |
Collapse
|
3
|
Walsh S, Pagani L, Xue Y, Laayouni H, Tyler-Smith C, Bertranpetit J. Positive selection in admixed populations from Ethiopia. BMC Genet 2020; 21:108. [PMID: 33092534 PMCID: PMC7580818 DOI: 10.1186/s12863-020-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Barcelona, Catalonia, Spain
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Dobon B, Rossell C, Walsh S, Bertranpetit J. Is there adaptation in the human genome for taste perception and phase I biotransformation? BMC Evol Biol 2019; 19:39. [PMID: 30704392 PMCID: PMC6357387 DOI: 10.1186/s12862-019-1366-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background During the modern human expansion, new environmental pressures may have driven adaptation, especially in genes related to the perception of ingested substances and their detoxification. Consequently, positive (adaptive) selection may have occurred in genes related to taste, and in those related to the CYP450 system due to its role in biotransformation of potentially toxic compounds. A total of 91 genes (taste receptors and CYP450 superfamily) have been studied using Hierarchical Boosting, a powerful combination of different selection tests, to detect signatures of recent positive selection in three continental human populations: Northern Europeans (CEU), East Asians (CHB) and Africans (YRI). Analyses have been refined with selection analyses of the 26 populations of 1000 Genomes Project Phase 3. Results Genes related to taste perception have not been positively selected in the three continental human populations. This finding suggests that, contrary to results of previous studies, different allele frequencies among populations in genes such as TAS2R38 and TAS2R16 are not due to positive selection but to genetic drift. CYP1 and CYP2 genes, also previously considered to be under positive selection, did not show signatures of selective sweeps. However, three genes belonging to the CYP450 system have been identified by the Hierarchical Boosting as positively selected: CYP3A4 and CYP3A43 in CEU, and CYP27A1 in CHB. Conclusions No main adaptive differences are found in known taste receptor genes among the three continental human populations studied. However, there are important genetic adaptations in the cytochrome P450 system related to the Out of Africa expansion of modern humans. We confirmed that CYP3A4 and CYP3A43 are under selection in CEU, and we report for the first time CYP27A1 to be under positive selection in CHB. Electronic supplementary material The online version of this article (10.1186/s12862-019-1366-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Begoña Dobon
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88. 08003, Barcelona, Catalonia, Spain
| | - Carla Rossell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 23a, 17165, Stockholm, Solna, Sweden
| | - Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88. 08003, Barcelona, Catalonia, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88. 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Akkuratov EE, Gelfand MS, Khrameeva EE. Neanderthal and Denisovan ancestry in Papuans: A functional study. J Bioinform Comput Biol 2018; 16:1840011. [DOI: 10.1142/s0219720018400115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequencing of complete nuclear genomes of Neanderthal and Denisovan stimulated studies about their relationship with modern humans demonstrating, in particular, that DNA alleles from both Neanderthal and Denisovan genomes are present in genomes of modern humans. The Papuan genome is a unique object because it contains both Neanderthal and Denisovan alleles. Here, we have shown that the Papuan genomes contain different gene functional groups inherited from each of the ancient people. The Papuan genomes demonstrate a relative prevalence of Neanderthal alleles in genes responsible for the regulation of transcription and neurogenesis. The enrichment of specific functional groups with Denisovan alleles is less pronounced; these groups are responsible for bone and tissue remodeling. This analysis shows that introgression of alleles from Neanderthals and Denisovans to Papuans occurred independently and retention of these alleles may carry specific adaptive advantages.
Collapse
Affiliation(s)
- Evgeny E. Akkuratov
- St. Petersburg State University, Institute of Translational Biomedicine, St. Petersburg, Russia
| | - Mikhail S. Gelfand
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute for Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, National Research University – Higher School of Economics, Moscow, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina E. Khrameeva
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute for Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Giuliani C, Sazzini M, Bacalini MG, Pirazzini C, Marasco E, Fontanesi E, Franceschi C, Luiselli D, Garagnani P. Epigenetic Variability across Human Populations: A Focus on DNA Methylation Profiles of the KRTCAP3, MAD1L1 and BRSK2 Genes. Genome Biol Evol 2016; 8:2760-73. [PMID: 27503294 PMCID: PMC5630933 DOI: 10.1093/gbe/evw186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural epigenetic diversity has been suggested as a key mechanism in microevolutionary processes due to its capability to create phenotypic variability within individuals and populations. It constitutes an important reservoir of variation potentially useful for rapid adaptation in response to environmental stimuli. The analysis of population epigenetic structure represents a possible tool to study human adaptation and to identify external factors that are able to naturally shape human DNA methylation variability. The aim of this study is to investigate the dynamics that create epigenetic diversity between and within different human groups. To this end, we first used publicly available epigenome-wide data to explore population-specific DNA methylation changes that occur at macro-geographic scales. Results from this analysis suggest that nutrients, UVA exposure and pathogens load might represent the main environmental factors able to shape DNA methylation profiles. Then, we evaluated DNA methylation of candidate genes (KRTCAP3, MAD1L1, and BRSK2), emerged from the previous analysis, in individuals belonging to different populations from Morocco, Nigeria, Philippines, China, and Italy, but living in the same Italian city. DNA methylation of the BRSK2 gene is significantly different between Moroccans and Nigerians (pairwise t-test: CpG 6 P-value = 5.2*10 (-) (3); CpG 9 P-value = 2.6*10 (-) (3); CpG 10 P-value = 3.1*10 (-) (3); CpG 11 P-value = 2.8*10 (-) (3)). Comprehensively, these results suggest that DNA methylation diversity is a source of variability in human groups at macro and microgeographical scales and that population demographic and adaptive histories, as well as the individual ancestry, actually influence DNA methylation profiles.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Italy
| | - Marco Sazzini
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy
| | - Elisa Fontanesi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Donata Luiselli
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|