1
|
Dolz M, Monterrey DT, Quartinello F, de Santos PG, Mateljak I, Pellis A, Guebitz G, Viña-González J, Alcalde M. Enzyme Benchmarking with Polyethylene Furanoate Soluble Scaffolds for Directed Evolution of PEFases. ACS OMEGA 2024; 9:45633-45640. [PMID: 39554451 PMCID: PMC11561765 DOI: 10.1021/acsomega.4c09053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Plastic waste is a major threat in our industrialized world and is driving research into bioplastics. The success of biobased polyethylene furanoate (PEF) as a viable alternative to polyethylene terephthalate (PET) of fossil origin will depend on designing effective enzymes to break it down, aiding its recycling. Here, a panel of fungal and bacterial cutinases were functionally expressed in a tandem yeast expression system based on Saccharomyces cerevisiae and Pichia pastoris. The activity of the enzyme panel was tested with soluble PEF model scaffolds, observing a correlation with the degradation of real PEF powder. A high-throughput colorimetric screening assay based on the PEF scaffold diethyl furan-2,5-dicarboxylate was developed, establishing the basis for future directed evolution campaigns of PEFases.
Collapse
Affiliation(s)
- Mikel Dolz
- EvoEnzyme
S.L., Parque Científico de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Dianelis T. Monterrey
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Marie Curie 2,
Cantoblanco, 28049 Madrid, Spain
| | - Felice Quartinello
- Austrian
Center of Industrial Biotechnology, Acib GmbH, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | | | - Ivan Mateljak
- EvoEnzyme
S.L., Parque Científico de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alessandro Pellis
- Department
of Chemistry and Industrial Chemistry, University
of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Georg Guebitz
- Department
of Agrobiotechnology IFA-Tulln, University
of Natural Resources and Life Sciences Vienna, Institute of Environmental
Biotechnology, Konrad
Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | | | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Marie Curie 2,
Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Lapierre FM, Bolz I, Büchs J, Huber R. Developing a fluorometric urease activity microplate assay suitable for automated microbioreactor experiments. Front Bioeng Biotechnol 2022; 10:936759. [PMID: 36185447 PMCID: PMC9515450 DOI: 10.3389/fbioe.2022.936759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Quantifying urease activity is an important task for Microbial Induced Calcite Precipitation research. A new urease activity microplate assay using a fluorescent pH indicator is presented. The method is also suitable for automated measurements during microbioreactor experiments. The assay reagent consists of the green fluorescent pH-indicator fluorescein, urea and a phosphate buffer. After sample addition, the microbial urease hydrolyses urea, which results in a pH and hence fluorescence increase. The fluorescence signal can be measured with a microplate reader or with the microbioreactor system BioLector, allowing for automated urease activity measurements during cultivation experiments. In both measurement systems, the fluorescence signal slope highly correlates with the urease activity measured offline with standard methods. Automated measurement is possible, as no sample preparation such as centrifugation or adjusting of the optical density is required. The assay was developed so that the culture samples turbidity, salinity or buffer concentration does not have a negative impact on the fluorescence signal. The assay allows for straightforward, non-hazardous, parallelized, cheap and reliable measurements, making research on ureolytic bacteria for Microbial Induced Calcite Precipitation more efficient. The assay could be adapted to other enzymes, which have a strong impact on the pH value.
Collapse
Affiliation(s)
- Frédéric M. Lapierre
- Munich University of Applied Sciences HM, Munich, Germany
- *Correspondence: Frédéric M. Lapierre, ; Robert Huber,
| | - Isabel Bolz
- Munich University of Applied Sciences HM, Munich, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Robert Huber
- Munich University of Applied Sciences HM, Munich, Germany
- *Correspondence: Frédéric M. Lapierre, ; Robert Huber,
| |
Collapse
|
3
|
Design of Experiments As a Tool for Optimization in Recombinant Protein Biotechnology: From Constructs to Crystals. Mol Biotechnol 2019; 61:873-891. [DOI: 10.1007/s12033-019-00218-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Groher AC, Jager S, Schneider C, Groher F, Hamacher K, Suess B. Tuning the Performance of Synthetic Riboswitches using Machine Learning. ACS Synth Biol 2019; 8:34-44. [PMID: 30513199 DOI: 10.1021/acssynbio.8b00207] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Riboswitch development for clinical, technological, and synthetic biology applications constantly seeks to optimize regulatory behavior. Here, we present a machine learning approach to improve the regulation of a tetracycline (tc)-dependent riboswitch device composed of two individual tc aptamers. We developed a bioinformatics model that combines random forest analysis with a convolutional neural network to predict the switching behavior of such tandem riboswitches. We found that both biophysical parameters and the hydrogen bond pattern influence regulation. Our new design pipeline led to significant improvement of the tc riboswitch device with a dynamic range extension from 8.5 to 40-fold. We are confident that our novel method not only results in an excellent tc-dependent riboswitch device but further holds great promise and potential for the optimization of other riboswitches.
Collapse
|
5
|
Buß O, Voss M, Delavault A, Gorenflo P, Syldatk C, Bornscheuer U, Rudat J. β-Phenylalanine Ester Synthesis from Stable β-Keto Ester Substrate Using Engineered ω-Transaminases. Molecules 2018; 23:molecules23051211. [PMID: 29783679 PMCID: PMC6100204 DOI: 10.3390/molecules23051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
The successful synthesis of chiral amines from ketones using ω-transaminases has been shown in many cases in the last two decades. In contrast, the amination of β-keto acids is a special and relatively new challenge, as they decompose easily in aqueous solution. To avoid this, transamination of the more stable β-keto esters would be an interesting alternative. For this reason, ω-transaminases were tested in this study, which enabled the transamination of the β-keto ester substrate ethyl benzoylacetate. Therefore, a ω-transaminase library was screened using a coloring o-xylylenediamine assay. The ω-transaminase mutants 3FCR_4M and ATA117 11Rd show great potential for further engineering experiments aiming at the synthesis of chiral (S)- and (R)-β-phenylalanine esters. This alternative approach resulted in the conversion of 32% and 13% for the (S)- and (R)-enantiomer, respectively. Furthermore, the (S)-β-phenylalanine ethyl ester was isolated by performing a semi-preparative synthesis.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
| | - Moritz Voss
- Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - André Delavault
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
| | - Pascal Gorenflo
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
| | - Uwe Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
| |
Collapse
|
6
|
Groher F, Bofill-Bosch C, Schneider C, Braun J, Jager S, Geißler K, Hamacher K, Suess B. Riboswitching with ciprofloxacin-development and characterization of a novel RNA regulator. Nucleic Acids Res 2018; 46:2121-2132. [PMID: 29346617 PMCID: PMC5829644 DOI: 10.1093/nar/gkx1319] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/24/2022] Open
Abstract
RNA molecules play important and diverse regulatory roles in the cell. Inspired by this natural versatility, RNA devices are increasingly important for many synthetic biology applications, e.g. optimizing engineered metabolic pathways, gene therapeutics or building up complex logical units. A major advantage of RNA is the possibility of de novo design of RNA-based sensing domains via an in vitro selection process (SELEX). Here, we describe development of a novel ciprofloxacin-responsive riboswitch by in vitro selection and next-generation sequencing-guided cellular screening. The riboswitch recognizes the small molecule drug ciprofloxacin with a KD in the low nanomolar range and adopts a pseudoknot fold stabilized by ligand binding. It efficiently interferes with gene expression both in lower and higher eukaryotes. By controlling an auxotrophy marker and a resistance gene, respectively, we demonstrate efficient, scalable and programmable control of cellular survival in yeast. The applied strategy for the development of the ciprofloxacin riboswitch is easily transferrable to any small molecule target of choice and will thus broaden the spectrum of RNA regulators considerably.
Collapse
Affiliation(s)
- Florian Groher
- Synthetic Genetic Circuits, Dept. of Biology, TU Darmstadt, Darmstadt, Germany
| | | | | | - Johannes Braun
- Synthetic Genetic Circuits, Dept. of Biology, TU Darmstadt, Darmstadt, Germany
| | - Sven Jager
- Computational Biology and Simulation, Dept. of Biology, TU Darmstadt, Darmstadt, Germany
| | - Katharina Geißler
- Synthetic Genetic Circuits, Dept. of Biology, TU Darmstadt, Darmstadt, Germany
| | - Kay Hamacher
- Computational Biology and Simulation, Dept. of Biology, TU Darmstadt, Darmstadt, Germany
- Dept. of Physics, Dept. of Computer Science, TU Darmstadt, Darmstadt, Germany
| | - Beatrix Suess
- Synthetic Genetic Circuits, Dept. of Biology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Jager S, Schiller B, Babel P, Blumenroth M, Strufe T, Hamacher K. StreAM-[Formula: see text]: algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs. Algorithms Mol Biol 2017; 12:15. [PMID: 28572834 PMCID: PMC5450175 DOI: 10.1186/s13015-017-0105-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/16/2017] [Indexed: 12/05/2022] Open
Abstract
Background In this work, we present a new coarse grained representation of RNA dynamics. It is based on adjacency matrices and their interactions patterns obtained from molecular dynamics simulations. RNA molecules are well-suited for this representation due to their composition which is mainly modular and assessable by the secondary structure alone. These interactions can be represented as adjacency matrices of k nucleotides. Based on those, we define transitions between states as changes in the adjacency matrices which form Markovian dynamics. The intense computational demand for deriving the transition probability matrices prompted us to develop StreAM-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_g$$\end{document}Tg, a stream-based algorithm for generating such Markov models of k-vertex adjacency matrices representing the RNA. Results We benchmark StreAM-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_g$$\end{document}Tg (a) for random and RNA unit sphere dynamic graphs (b) for the robustness of our method against different parameters. Moreover, we address a riboswitch design problem by applying StreAM-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_g$$\end{document}Tg on six long term molecular dynamics simulation of a synthetic tetracycline dependent riboswitch (500 ns) in combination with five different antibiotics. Conclusions The proposed algorithm performs well on large simulated as well as real world dynamic graphs. Additionally, StreAM-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_g$$\end{document}Tg provides insights into nucleotide based RNA dynamics in comparison to conventional metrics like the root-mean square fluctuation. In the light of experimental data our results show important design opportunities for the riboswitch.
Collapse
|
8
|
Groß C, Hamacher K, Schmitz K, Jager S. Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis. J Chem Inf Model 2017; 57:243-255. [PMID: 28128951 DOI: 10.1021/acs.jcim.6b00556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Fusarium solani cutinase (FsC) is a promising candidate for the enzymatic degradation of the synthetic polyester polyethylene terephthalate (PET) but still suffers from a lack of activity. Using atomic MD simulations with different concentrations of cleavage product ethylene glycol (EG), we show influences of EG on the dynamic of FsC. We observed accumulation of EG in the active site region reducing the local flexibility of FsC. Furthermore, we used a coarse-grained mechanical model to investigate whether substrate binding in the active site causes an induced fit. We observed this supposed induced fit or "breath-like" movement during substrate binding indicating that the active site has to be flexible for substrate conversion. This guides rational design: mutants with an increased flexibility near the active site should be considered to compensate the solvent-mediated reduction in activity.
Collapse
Affiliation(s)
- Christine Groß
- Department of Biology, Computational Biology & Simulation Group, Technische Universität Darmstadt , Schnittspahnstraße 2, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department of Biology, Computational Biology & Simulation Group, Technische Universität Darmstadt , Schnittspahnstraße 2, 64287 Darmstadt, Germany
| | - Katja Schmitz
- Department of Chemistry, Biological Chemistry Group, Technische Universität Darmstadt , Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Sven Jager
- Department of Biology, Computational Biology & Simulation Group, Technische Universität Darmstadt , Schnittspahnstraße 2, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
Jager S, Schiller B, Strufe T, Hamacher K. StreAM- $$T_g$$ : Algorithms for Analyzing Coarse Grained RNA Dynamics Based on Markov Models of Connectivity-Graphs. LECTURE NOTES IN COMPUTER SCIENCE 2016. [DOI: 10.1007/978-3-319-43681-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|