1
|
Singh AK, Joshi I, Reddy NMN, Purushotham SS, Eswaramoorthy M, Vasudevan M, Banerjee S, Clement JP, Kundu TK. Epigenetic modulation rescues neurodevelopmental deficits in Syngap1 +/- mice. Aging Cell 2025; 24:e14408. [PMID: 39878322 PMCID: PMC11896221 DOI: 10.1111/acel.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/22/2024] [Indexed: 01/31/2025] Open
Abstract
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored. Here, we have found that the p300/CBP specific acetylation marks of histones are significantly repressed in the hippocampus of adolescent Syngap1+/- mice. Additionally, we observed decreased dendritic branching of newly born DCX+ neurons in these mice, suggesting altered adult hippocampal neurogenesis. To establish the causal relationship of Syngap1+/- phenotype and the altered histone acetylation signature we have treated 2-4 months old Syngap1+/- mice with glucose-derived carbon nanosphere (CSP) conjugated potent small molecule activator (TTK21) of p300/CBP lysine acetyltransferase (CSP-TTK21). The enhancement of the p300/CBP specific acetylation marks of histones by CSP-TTK21 restored synaptic functions, increased dendritic branching of DCX+ neurons, enables the capability to reorganise cortical circuits in response to change in the sensory stimuli, and improves behavioural measures in Syngap1+/- mice that are very closely comparable to wild type littermates. Further, hippocampal RNA-Seq analysis of these mice revealed that the expression of many critical genes such as Adcy1, Ntrk3, Egr1, and Foxj1 which are key regulators of synaptic plasticity and neurogenesis and are well associated with ID/ASD reversed upon CSP-TTK21 treatment. This study could be the first demonstration of the reversal of autistic behaviour and neural wiring upon the modulation of altered epigenetic modification(s).
Collapse
Affiliation(s)
- Akash Kumar Singh
- Molecular Biology and Genetics Unit, Transcription and Disease LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Ila Joshi
- Molecular Biology and Genetics Unit, Transcription and Disease LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Neeharika M. N. Reddy
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - M. Eswaramoorthy
- Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | | | | | - James P. Clement
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
- Present address:
University of ExeterExeterUK
| | - Tapas K. Kundu
- Molecular Biology and Genetics Unit, Transcription and Disease LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
2
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Asthana S, Mott J, Tong M, Pei Z, Mao Y. The Exon Junction Complex Factor RBM8A in Glial Fibrillary Acid Protein-Expressing Astrocytes Modulates Locomotion Behaviors. Cells 2024; 13:498. [PMID: 38534343 PMCID: PMC10968791 DOI: 10.3390/cells13060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The role of RNA Binding Motif Protein 8a (RBM8A), an exon junction complex (EJC) component, in neurodevelopmental disorders has been increasingly studied for its crucial role in regulating multiple levels of gene expression. It regulates mRNA splicing, translation, and mRNA degradation and influences embryonic development. RBM8A protein is expressed in both neurons and astrocytes, but little is known about RBM8A's specific role in glial fibrillary acid protein (GFAP)-positive astrocytes. To address the role of RBM8A in astrocytes, we generated a conditional heterozygous knockout (KO) mouse line of Rbm8a in astrocytes using a GFAP-cre line. We confirmed a decreased expression of RBM8A in astrocytes of heterozygous conditional KO mice via RT-PCR and Sanger sequencing, as well as qRT-PCR, immunohistochemistry, and Western blot. Interestingly, these mice exhibit significantly increased movement and mobility, alongside sex-specific altered anxiety in the open field test (OFT) and elevated plus maze (OPM) tests. These tests, along with the rotarod test, suggest that these mice have normal motor coordination but hyperactive phenotypes. In addition, the haploinsufficiency of Rbm8a in astrocytes leads to a sex-specific change in astrocyte density in the dentate gyrus. This study further reveals the contribution of Rbm8a deletion to CNS pathology, generating more insights via the glial lens of an Rbm8a model of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Mabel Tong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| |
Collapse
|
4
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
5
|
Qiao H, Tian Y, Huo Y, Man HY. Role of the DUB enzyme USP7 in dendritic arborization, neuronal migration, and autistic-like behaviors in mice. iScience 2022; 25:104595. [PMID: 35800757 PMCID: PMC9253496 DOI: 10.1016/j.isci.2022.104595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Duplication and haploinsufficiency of the USP7 gene are implicated in autism spectrum disorders (ASD), but the role for USP7 in neurodevelopment and contribution to ASD pathogenesis remain unknown. We find that in primary neurons, overexpression of USP7 increases dendritic branch number and total dendritic length, whereas knockdown leads to opposite alterations. Besides, USP7 deubiquitinates the X-linked inhibitor of apoptosis protein (XIAP). The USP7-induced increase in XIAP suppresses caspase 3 activity, leading to a reduction in tubulin cleavage and suppression of dendritic pruning. When USP7 is introduced into the brains of prenatal mice via in utero electroporation (IUE), it results in abnormal migration of newborn neurons and increased dendritic arborization. Importantly, intraventricular brain injection of AAV-USP7 in P0 mice leads to autistic-like phenotypes including aberrant social interactions, repetitive behaviors, as well as changes in somatosensory sensitivity. These findings provide new insights in USP7-related neurobiological functions and its implication in ASD. Overexpression of USP7 increases dendritic arborization USP7 targets XIAP for deubiquitination and regulates XIAP proteostasis in neurons USP7 regulates dendritic remodeling via the XIAP-caspase 3-tubulin pathway Prenatal overexpression of USP7 in mice leads to autistic-like behaviors
Collapse
|
6
|
Zhang X, Wang M, Qiao Y, Shan Z, Yang M, Li G, Xiao Y, Wei L, Bi H, Gao T. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:282. [PMID: 35434037 PMCID: PMC9011256 DOI: 10.21037/atm-22-762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
Background Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized by Cordyceps sinensis militaris. Previous studies have reported that this herb has antidepressant activity. The present study used network pharmacology and molecular docking techniques to investigate the potential antidepressant mechanisms of Cordyceps sinensis. Methods The active ingredients of Cordycepssinensis were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the potential targets were predicted using the PharmMapper platform. The GeneCards database was then used to obtain sub-targets for depression. Common targets were screened and enrichment analyses were performed using the Metascape platform. Finally, the relationship between the active ingredients and the core targets were verified by molecular docking. Results Through network pharmacological analysis, 7 active ingredients in Cordyceps sinensis and 41 common targets of drugs and diseases were identified. The active ingredients of Cordyceps sinensis may exert antidepressant effects by acting on important targets such as catalase (CAT), CREB binding protein (CREBBP), epidermal growth factor (EGF), and E1A binding protein P300 (EP300), and by modulating the signaling pathways in which these targets are involved. Subsequently, the core targets were docked to the active ingredients and good binding was observed. Conclusions The active ingredients of Cordycepssinensis may exert antidepressant effects by regulating the CREB binding protein and anti-oxidative stress effects. The foxo signaling pathway (hsa04068), hypoxia-inducible factor 1 (HIF-1) signaling pathway (hsa04066), and Huntington’s disease (hsa05016) may be involved in the underlying mechanisms of Cordycepssinensis. The joint application of network pharmacology and molecular docking provides a new approach to study the mechanisms of action of traditional Chinese medicine. Cordyceps sinensis may play an important role in the future treatment of patients with depression.
Collapse
Affiliation(s)
- Xingfang Zhang
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | | | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhongshu Shan
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tingting Gao
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Identification of key genes and convergent pathways disrupted in autism spectrum disorder via comprehensive bioinformatic analysis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Wagner NR, MacDonald JL. Atypical Neocortical Development in the Cited2 Conditional Knockout Leads to Behavioral Deficits Associated with Neurodevelopmental Disorders. Neuroscience 2020; 455:65-78. [PMID: 33346116 DOI: 10.1016/j.neuroscience.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
The mammalian neocortex develops from a single layer of neuroepithelial cells to form a six-layer heterogeneous mosaic of differentiated neurons and glial cells. This process requires a complex choreography of temporally and spatially restricted transcription factors and epigenetic regulators. Even subtle disruptions in this regulation can alter the way the neocortex forms and functions, leading to a neurodevelopmental disorder. One epigenetic regulator that is essential for the precise development of the neocortex is CITED2 (CBP/p300 Interacting Transactivator with ED-rich termini). Cited2 is highly expressed by intermediate progenitor cells in the subventricular zone during the generation of the superficial layers of the neocortex. A forebrain-specific conditional knockout of Cited2 (cKO) exhibits reduced proliferation of intermediate progenitor cells embryonically, leading to reduced thickness of the superficial layers and reduced corpus callosum (CC) volume postnatally. Further, the Cited2 cKO display disruptions in balanced neocortical arealization, with a specific reduction in the somatosensory neocortical length, and dysregulation of precise, area-specific neuronal connectivity. Here, we explore the behavioral consequences resulting from this aberrant neocortical development. We demonstrate that Cited2 cKO mice display decreased maternal separation-induced ultrasonic vocalizations (USVs) as neonates, and an increase in rearing behavior and lack of habituation following repeated acoustic startle as adults. They do not display alterations in anxiety-like behavior, overall locomotor activity, or social interactions. Together with the morphological, molecular, and connectivity disruptions, these results identify the Cited2 cKO neocortex as an ideal system to study mechanisms underlying neurodevelopmental and neuroanatomical disruptions with relevance to human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nikolaus R Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse NY, United States
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse NY, United States.
| |
Collapse
|
9
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
10
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
11
|
Sullivan JM, De Rubeis S, Schaefer A. Convergence of spectrums: neuronal gene network states in autism spectrum disorder. Curr Opin Neurobiol 2019; 59:102-111. [PMID: 31220745 DOI: 10.1016/j.conb.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by social deficits and restrictive and/or repetitive behaviors. The breadth of ASD symptoms is paralleled by the multiplicity of genes that have been implicated in its etiology. Initial findings revealed numerous ASD risk genes that contribute to synaptic function. More recently, genomic and gene expression studies point to altered chromatin function and impaired transcriptional control as additional risk factors for ASD. The consequences of impaired transcriptional alterations in ASD involve consistent changes in synaptic gene expression and cortical neuron specification during brain development. The multiplicity of genetic and environmental factors associated with ASD risk and their convergence onto common molecular pathways in neurons point to ASD as a disorder of gene regulatory networks.
Collapse
Affiliation(s)
- Josefa M Sullivan
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA
| | - Silvia De Rubeis
- Department of Psychiatry, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA.
| |
Collapse
|
12
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
13
|
Sethi S, Keil KP, Lein PJ. 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 2018; 92:3337-3345. [PMID: 30225637 PMCID: PMC6196112 DOI: 10.1007/s00204-018-2307-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
PCB 11 (3,3'-dichlorobiphenyl), a contemporary congener produced as a byproduct of current pigment production processes, has recently emerged as a prevalent worldwide pollutant. We recently demonstrated that exposure to PCB 11 increases dendritic arborization in vitro, but the mechanism(s) mediating this effect remain unknown. To address this data gap, primary cortical neuron-glia co-cultures derived from neonatal Sprague-Dawley rats were exposed for 48 h to either vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM in the absence or presence of pharmacologic antagonists of established molecular targets of higher chlorinated PCBs. Reporter cell lines were used to test activity of PCB 11 at the aryl hydrocarbon receptor (AhR) and thyroid hormone receptor (THR). PCB 11 lacked activity at the AhR and THR, and antagonism of these receptors had no effect on the dendrite-promoting activity of PCB 11. Pharmacologic antagonism of various calcium channels or treatment with antioxidants also did not alter PCB 11-induced dendritic arborization. In contrast, pharmacologic blockade or shRNA knockdown of cAMP response element-binding protein (CREB) significantly decreased dendritic growth in PCB 11-exposed cultures, suggesting PCB 11 promotes dendritic growth via CREB-mediated mechanisms. Since CREB signaling is crucial for normal neurodevelopment, and perturbations of CREB signaling have been associated with neurodevelopmental disorders, our findings suggest that this contemporary pollutant poses a threat to the developing brain, particularly in individuals with heritable mutations that promote CREB signaling.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Larizza L, Finelli P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin Genet 2018; 95:231-240. [DOI: 10.1111/cge.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. Larizza
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
| | - P. Finelli
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Medical Biotechnology and Translational Medicine; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
15
|
Lysine Acetylation and Deacetylation in Brain Development and Neuropathies. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:19-36. [PMID: 28161493 PMCID: PMC5339409 DOI: 10.1016/j.gpb.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries.
Collapse
|
16
|
Fergelot P, Van Belzen M, Van Gils J, Afenjar A, Armour CM, Arveiler B, Beets L, Burglen L, Busa T, Collet M, Deforges J, de Vries BBA, Dominguez Garrido E, Dorison N, Dupont J, Francannet C, Garciá-Minaúr S, Gabau Vila E, Gebre-Medhin S, Gener Querol B, Geneviève D, Gérard M, Gervasini CG, Goldenberg A, Josifova D, Lachlan K, Maas S, Maranda B, Moilanen JS, Nordgren A, Parent P, Rankin J, Reardon W, Rio M, Roume J, Shaw A, Smigiel R, Sojo A, Solomon B, Stembalska A, Stumpel C, Suarez F, Terhal P, Thomas S, Touraine R, Verloes A, Vincent-Delorme C, Wincent J, Peters DJM, Bartsch O, Larizza L, Lacombe D, Hennekam RC. Phenotype and genotype in 52 patients with Rubinstein-Taybi syndrome caused by EP300 mutations. Am J Med Genet A 2016; 170:3069-3082. [PMID: 27648933 DOI: 10.1002/ajmg.a.37940] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/07/2016] [Indexed: 01/01/2023]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8-10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins. Up to now 26 individuals with an EP300 mutation have been published. Here, we describe the phenotype and genotype of 42 unpublished RSTS patients carrying EP300 mutations and intragenic deletions and offer an update on another 10 patients. We compare the data to 308 individuals with CREBBP mutations. We demonstrate that EP300 mutations cause a phenotype that typically resembles the classical RSTS phenotype due to CREBBP mutations to a great extent, although most facial signs are less marked with the exception of a low-hanging columella. The limb anomalies are more similar to those in CREBBP mutated individuals except for angulation of thumbs and halluces which is very uncommon in EP300 mutated individuals. The intellectual disability is variable but typically less marked whereas the microcephaly is more common. All types of mutations occur but truncating mutations and small rearrangements are most common (86%). Missense mutations in the HAT domain are associated with a classical RSTS phenotype but otherwise no genotype-phenotype correlation is detected. Pre-eclampsia occurs in 12/52 mothers of EP300 mutated individuals versus in 2/59 mothers of CREBBP mutated individuals, making pregnancy with an EP300 mutated fetus the strongest known predictor for pre-eclampsia. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Fergelot
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Martine Van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Julien Van Gils
- Department of Genetics, University Hospital Center, Bordeaux, France
| | - Alexandra Afenjar
- Unité de Génétique, Hospital Armand Trousseau-La Roche-Guyon, AP-HP, Paris, France
| | - Christine M Armour
- Regional Genetics Unit, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Benoit Arveiler
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Lex Beets
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Lydie Burglen
- Unité de Génétique, Hospital Armand Trousseau-La Roche-Guyon, AP-HP, Paris, France
| | - Tiffany Busa
- Unité de Génétique Clinique, Hospital La Timone, AP-HM, Marseille, France
| | - Marie Collet
- Département de Génétique, Hospital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julie Deforges
- Department of Genetics, University Hospital Center, Bordeaux, France
| | - Bert B A de Vries
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Nathalie Dorison
- Departement de Neuropédiatrie, Institut Jérôme Lejeune, Paris, France
| | - Juliette Dupont
- Serviço de Genética, Departamento de Pediatria, Hospital de Santa Maria, CHLN, Lisboa, Portugal
| | | | - Sixto Garciá-Minaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, Spain
| | - Elisabeth Gabau Vila
- Genetics Clinic, Hospital de Sabadell, Corporació Sanitària Parc Taulí, Sabadell, Spain
| | - Samuel Gebre-Medhin
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - David Geneviève
- Service de Génétique Médicale, Hospital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Marion Gérard
- Service de Génétique, Hospital Clémenceau, CHU de Caen, Caen, France
| | | | - Alice Goldenberg
- Unité de Génétique Clinique, Hospital Charles Nicolle, CHU Rouen, Rouen, France
| | - Dragana Josifova
- Department of Medical Genetics, Guy's and St Thomas Hospital, London, United Kingdom
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Saskia Maas
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Bruno Maranda
- Laboratoire de Médecine Génétique, CHUQ Pavillon CHUL, Saint Foy, Canada
| | - Jukka S Moilanen
- PEDEGO Research Unit, and Medical Research Center Oulu, Department of Clinical Genetics, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Philippe Parent
- Département de Pédiatrie et Génétique Médicale, Hospital Augustin Morvan, CHU Brest, Brest, France
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | | | - Marlène Rio
- Unité de Génétique Clinique, Hospital La Timone, AP-HM, Marseille, France
| | - Joëlle Roume
- Unité de Génétique Médicale, CHI Poissy, Saint Germain en Laye, France
| | - Adam Shaw
- Department of Medical Genetics, Guy's and St Thomas Hospital, London, United Kingdom
| | - Robert Smigiel
- Department of Paediatrics, Wroclaw Medical University, Wroclaw, Poland
| | | | - Benjamin Solomon
- Division of Medical Genomics, Inova Translational Medical Institute, Falls Church
| | | | - Constance Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Francisco Suarez
- Service de Génétique, Hospital Virgen de la Salud, Toledo, Spain
| | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom
| | - Renaud Touraine
- Service de Génétique Clinique et Moléculaire, CHU Hôpital-Nord, Saint-Etienne, France
| | - Alain Verloes
- Département de Génétique, CHU Robert Debré, AP-HP, Paris, France
| | | | - Josephine Wincent
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Dorien J M Peters
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Lidia Larizza
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Didier Lacombe
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ergaz Z, Weinstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol 2016; 64:116-40. [PMID: 27142188 DOI: 10.1016/j.reprotox.2016.04.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models.
Collapse
Affiliation(s)
- Zivanit Ergaz
- Laboratory of Teratology, Department of Medical Neurobiology Hebrew University Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology Hebrew University Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel
| | - Asher Ornoy
- Laboratory of Teratology, Department of Medical Neurobiology Hebrew University Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel.
| |
Collapse
|