1
|
Deng X, Higaki T, Lin HH, Lee YRJ, Liu B. The unconventional TPX2 family protein TPXL3 regulates α Aurora kinase function in spindle morphogenesis in Arabidopsis. THE PLANT CELL 2025; 37:koaf065. [PMID: 40139933 PMCID: PMC12012799 DOI: 10.1093/plcell/koaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025]
Abstract
Spindle assembly in vertebrates requires the Aurora kinase, which is targeted to microtubules and activated by TPX2 (Targeting Protein of XKLP2). In Arabidopsis (Arabidopsis thaliana), TPX2-LIKE 3 (TPXL3), but not the highly conserved TPX2, is essential. To test the hypothesis that TPXL3 regulates the function of α Aurora kinase in spindle assembly, we generated transgenic Arabidopsis lines expressing an artificial microRNA targeting TPXL3 mRNA (amiR-TPXL3). The resulting mutants exhibited growth retardation, which was linked to compromised TPXL3 expression. In the mutant cells, α Aurora was delocalized from spindle microtubules to the cytoplasm, and spindles were assembled without recognizable poles. A functional TPXL3-GFP fusion protein first prominently appeared on the prophase nuclear envelope. Then, TPXL3-GFP localized to spindle microtubules (primarily toward the spindle poles, like γ-tubulin), and finally to the re-forming nuclear envelope during telophase and cytokinesis. However, TPXL3 was absent from phragmoplast microtubules. In addition, we found that the TPXL3 N-terminal Aurora-binding motif, microtubule-binding domain, and importin-binding motif, but not the C-terminal segment, were required for its mitotic function. Expression of truncated TPXL3 variants enhanced the defects in spindle assembly and seedling growth of amiR-TPXL3 plants. Taken together, our findings uncovered the essential function of TPXL3, but not TPX2, in targeting and activating α Aurora kinase for spindle apparatus assembly in Arabidopsis.
Collapse
Affiliation(s)
- Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Allsman LA, Bellinger MA, Huang V, Duong M, Contreras A, Romero AN, Verboonen B, Sidhu S, Zhang X, Steinkraus H, Uyehara AN, Martinez SE, Sinclair RM, Soriano GS, Diep B, Byrd V. D, Noriega A, Drakakaki G, Sylvester AW, Rasmussen CG. Subcellular positioning during cell division and cell plate formation in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1204889. [PMID: 37484472 PMCID: PMC10360171 DOI: 10.3389/fpls.2023.1204889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Introduction During proliferative plant cell division, the new cell wall, called the cell plate, is first built in the middle of the cell and then expands outward to complete cytokinesis. This dynamic process requires coordinated movement and arrangement of the cytoskeleton and organelles. Methods Here we use live-cell markers to track the dynamic reorganization of microtubules, nuclei, endoplasmic reticulum, and endomembrane compartments during division and the formation of the cell plate in maize leaf epidermal cells. Results The microtubule plus-end localized protein END BINDING1 (EB1) highlighted increasing microtubule dynamicity during mitosis to support rapid changes in microtubule structures. The localization of the cell-plate specific syntaxin KNOLLE, several RAB-GTPases, as well as two plasma membrane localized proteins was assessed after treatment with the cytokinesis-specific callose-deposition inhibitor Endosidin7 (ES7) and the microtubule-disrupting herbicide chlorpropham (CIPC). While ES7 caused cell plate defects in Arabidopsis thaliana, it did not alter callose accumulation, or disrupt cell plate formation in maize. In contrast, CIPC treatment of maize epidermal cells occasionally produced irregular cell plates that split or fragmented, but did not otherwise disrupt the accumulation of cell-plate localized proteins. Discussion Together, these markers provide a robust suite of tools to examine subcellular trafficking and organellar organization during mitosis and cell plate formation in maize.
Collapse
Affiliation(s)
- Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Marschal A. Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Vivian Huang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew Duong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alondra Contreras
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Andrea N. Romero
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Benjamin Verboonen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Sukhmani Sidhu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Xiaoguo Zhang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Holly Steinkraus
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Rosalie M. Sinclair
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Gabriela Salazar Soriano
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Beatrice Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Dawson Byrd V.
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alexander Noriega
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
4
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
5
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
6
|
Meinke DW. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. THE NEW PHYTOLOGIST 2020; 226:306-325. [PMID: 31334862 DOI: 10.1111/nph.16071] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 05/20/2023]
Abstract
With the emergence of high-throughput methods in plant biology, the importance of long-term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40-year effort to isolate and characterize the most common class of mutants encountered in Arabidopsis (Arabidopsis thaliana): those defective in embryo development. I present an updated dataset of 510 EMBRYO-DEFECTIVE (EMB) genes identified throughout the Arabidopsis community; include important details on 2200 emb mutants and 241 pigment-defective embryo (pde) mutants analyzed in my laboratory; provide curated datasets with key features and publication links for each EMB gene identified; revisit past estimates of 500-1000 total EMB genes in Arabidopsis; document 83 double mutant combinations reported to disrupt embryo development; emphasize the importance of following established nomenclature guidelines and acknowledging allele history in research publications; and consider how best to extend community-based curation and screening efforts to approach saturation for this diverse class of mutants in the future. Continued advances in identifying EMB genes and characterizing their loss-of-function mutant alleles are needed to understand genotype-to-phenotype relationships in Arabidopsis on a broad scale, and to document the contributions of large numbers of essential genes to plant growth and development.
Collapse
Affiliation(s)
- David W Meinke
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
7
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
8
|
Abstract
The ethylating agent ethyl methanesulfonate (EMS) is widely used for inducing random point mutations. In Arabidopsis, treatment with EMS causes GC-to-AT transitions with great efficiency: it has been estimated that a population of 50,000 well-mutagenized plants harbors one or more transitions in almost every GC pair of the genome. These properties, combined with ease of use, make EMS a mutagen of choice for genetic screens. Here, we describe a protocol for mutagenizing Arabidopsis seed with EMS. In addition, we briefly consider the germ line sectors typically induced by this treatment, and approaches for estimating the rate of induced mutations.
Collapse
Affiliation(s)
- C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Gebremeskel H, Dou J, Li B, Zhao S, Muhammad U, Lu X, He N, Liu W. Molecular Mapping and Candidate Gene Analysis for GA 3 Responsive Short Internode in Watermelon ( Citrullus lanatus). Int J Mol Sci 2019; 21:E290. [PMID: 31906246 PMCID: PMC6982186 DOI: 10.3390/ijms21010290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Plants with shorter internodes are suitable for high-density planting, lodging resistance and the preservation of land resources by improving yield per unit area. In this study, we identified a locus controlling the short internode trait in watermelon using Zhengzhouzigua (long internode) and Duan125 (short internode) as mapping parents. Genetic analysis indicated that F1 plants were consistent with long internode plants, which indicates that the long internode was dominant over the short internode. The observed F2 and BC1 individuals fitted the expected phenotypic segregation ratios of 3:1 and 1:1, respectively. The locus was mapped on chromosome 9 using a bulked segregant analysis approach. The region was narrowed down to 8.525 kb having only one putative gene, Cla015407, flanking by CAPS90 and CAPS91 markers, which encodes gibberellin 3β-hydroxylase (GA 3β-hydroxylase). The sequence alignment of the candidate gene between both parents revealed a 13 bp deletion in the short internode parent, which resulted in a truncated protein. Before GA3 application, significantly lower GA3 content and shorter cell length were obtained in the short internode plants. However, the highest GA3 content and significant increase in cell length were observed in the short internode plants after exogenous GA3 application. In the short internode plants, the expression level of the Cla015407 was threefold lower than the long internode plants in the stem tissue. In general, our results suggested that Cla015407 might be the candidate gene responsible for the short internode phenotype in watermelon and the phenotype is responsive to exogenous GA3 application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.G.); (J.D.); (B.L.); (S.Z.); (U.M.); (X.L.); (N.H.)
| |
Collapse
|
10
|
Zhu H, Zhang M, Sun S, Yang S, Li J, Li H, Yang H, Zhang K, Hu J, Liu D, Yang L. A Single Nucleotide Deletion in an ABC Transporter Gene Leads to a Dwarf Phenotype in Watermelon. FRONTIERS IN PLANT SCIENCE 2019; 10:1399. [PMID: 31798601 PMCID: PMC6863960 DOI: 10.3389/fpls.2019.01399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/10/2019] [Indexed: 05/15/2023]
Abstract
Dwarf habit is one of the most important traits in crop plant architecture, as it can increase plant density and improved land utilization, especially for protected cultivation, as well as increasing lodging resistance and economic yield. At least four dwarf genes have been identified in watermelon, but none of them has been cloned. In the current study, the Cldw-1 gene was primary-mapped onto watermelon chromosome 9 by next-generation sequencing-aided bulked-segregant analysis (BSA-seq) of F2 plants derived from a cross between a normal-height line, WT4, and a dwarf line, WM102, in watermelon. The candidate region identified by BSA-seq was subsequently validated and confirmed by linkage analysis using 30 simple sequence repeat (SSR) markers in an F2 population of 124 plants. The Cldw-1 gene was further fine-mapped by chromosome walking in a large F2 population of 1,053 plants and was delimited into a candidate region of 107.00 kb. Six genes were predicted to be in the candidate region, and only one gene, Cla010337, was identified to have two single nucleotide polymorphisms (SNPs) and a single nucleotide deletion in the exons in the dwarf line, WM102. A derived cleaved amplified polymorphic sequence (dCAPS) marker was developed from the single nucleotide deletion, co-segregated with the dwarf trait in both the F2 population and a germplasm collection of 165 accessions. Cla010337 encoded an ATP-binding cassette transporter (ABC transporter) protein, and the expression levels of Cla010337 were significantly reduced in all the tissues tested in the dwarf line, WM102. The results of this study will be useful in achieving a better understanding of the molecular mechanism of the dwarf plant trait in watermelon and for the development of marker-assisted selection (MAS) for new dwarf cultivars.
Collapse
|
11
|
Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M. Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize. G3 (BETHESDA, MD.) 2018; 8:3583-3592. [PMID: 30194092 PMCID: PMC6222591 DOI: 10.1534/g3.118.200499] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1 Our method provides a quick, simple way to clone genes in maize.
Collapse
Affiliation(s)
- Harry Klein
- Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | | | | | - Jacob A Kelly
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | | | - Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | - Madelaine Bartlett
- Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
12
|
Pholo M, Coetzee B, Maree HJ, Young PR, Lloyd JR, Kossmann J, Hills PN. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome. PLANTA 2018; 248:477-488. [PMID: 29777364 DOI: 10.1007/s00425-018-2916-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.
Collapse
Affiliation(s)
- Motlalepula Pholo
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Beatrix Coetzee
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Philip R Young
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Paul N Hills
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
13
|
Liu M, Ran J, Zhou J. Non-canonical functions of the mitotic kinesin Eg5. Thorac Cancer 2018; 9:904-910. [PMID: 29927078 PMCID: PMC6068462 DOI: 10.1111/1759-7714.12792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023] Open
Abstract
Kinesins are widely expressed, microtubule-dependent motors that play vital roles in microtubule-associated cellular activities, such as cell division and intracellular transport. Eg5, also known as kinesin-5 or kinesin spindle protein, is a member of the kinesin family that contributes to the formation and maintenance of the bipolar mitotic spindle during cell division. Small-molecule compounds that inhibit Eg5 activity have been shown to impair spindle assembly, block mitotic progression, and possess anti-cancer activity. Recent studies focusing on the localization and functions of Eg5 in plants have demonstrated that in addition to spindle organization, this motor protein has non-canonical functions, such as chromosome segregation and cytokinesis, that have not been observed in animals. In this review, we discuss the structure, function, and localization of Eg5 in various organisms, highlighting the specific role of this protein in plants. We also propose directions for the future studies of novel Eg5 functions based on the lessons learned from plants.
Collapse
Affiliation(s)
- Min Liu
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jie Ran
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jun Zhou
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| |
Collapse
|
14
|
Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J. Unraveling the transcriptional complexity of compactness in sistan grape cluster. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:198-208. [PMID: 29576073 DOI: 10.1016/j.plantsci.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Yaghooti grape of Sistan is the earliest ripening grape in Iran, harvested every May annually. It is adapted to dry conditions in Sistan region and its water requirement is less than the other grape cultivars. The transcriptional complexity of this grape was studied in three stages of cluster development. Totally, 24121 genes were expressed in different cluster development steps (step 1: cluster formation, step 2: berry formation, step 3: final size of cluster) of which 3040 genes in the first stage, 2381 genes in the second stage and 2400 genes in the third stage showed a significant increase in expression. GO analysis showed that when the clusters are ripening, the activity of the nucleus, cytoplasmic, cytosol, membrane and chloroplast genes in the cluster architecture cells decreases. In contrast, the activity of the endoplasmic reticulum, vacuole and extracellular region genes enhances. When Yaghooti grape is growing and developing, some of metabolic pathways were activated in the response to biotic and abiotic stresses. Gene co-expression network reconstruction showed that AGAMOUS is a key gene in compactness of Sistan grape cluster, because it influences on expression of GA gene which leads to increase cluster length and berries size.
Collapse
Affiliation(s)
- Yasoub Shiri
- PhD student of biotechnology, Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, SA, Australia; School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia; Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| | - Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Steiner A, Rybak K, Altmann M, McFarlane HE, Klaeger S, Nguyen N, Facher E, Ivakov A, Wanner G, Kuster B, Persson S, Braun P, Hauser MT, Assaad FF. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:531-541. [PMID: 27420177 DOI: 10.1111/tpj.13275] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.
Collapse
Affiliation(s)
| | - Katarzyna Rybak
- Botany, Technische Universität München, Freising, 85354, Germany
| | - Melina Altmann
- Plant Systems Biology, Technische Universität München, Freising, 85354, Germany
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Parkville, 3010, Victoria, Australia
- Max Planck Institute for Molecular Plant Physiology, Postdam, 14476, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Ngoc Nguyen
- Botany, Technische Universität München, Freising, 85354, Germany
| | - Eva Facher
- Department Biologie I, Ludwig-Maximillians Universität, Planegg-Martinsried, 82152, Germany
| | - Alexander Ivakov
- School of Biosciences, University of Melbourne, Parkville, 3010, Victoria, Australia
- Max Planck Institute for Molecular Plant Physiology, Postdam, 14476, Germany
| | - Gerhard Wanner
- Department Biologie I, Ludwig-Maximillians Universität, Planegg-Martinsried, 82152, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, 3010, Victoria, Australia
- Max Planck Institute for Molecular Plant Physiology, Postdam, 14476, Germany
- School of Biosciences, ARC Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Pascal Braun
- Plant Systems Biology, Technische Universität München, Freising, 85354, Germany
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Farhah F Assaad
- Botany, Technische Universität München, Freising, 85354, Germany
| |
Collapse
|
16
|
Tian S, Wu J, Li F, Zou J, Liu Y, Zhou B, Bai Y, Sun MX. NtKRP, a kinesin-12 protein, regulates embryo/seed size and seed germination via involving in cell cycle progression at the G2/M transition. Sci Rep 2016; 6:35641. [PMID: 27779252 PMCID: PMC5078848 DOI: 10.1038/srep35641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes. Furthermore, we also show that CDKA;1 binds to NtKRP at the consensus phosphorylation sites and that the decreased cell numbers in NtKRP-silenced embryos are due to a delay in cell division cycle at the G2/M transition. In addition, binding between the cargo-binding tail domain of NtKRP and CDKA; 1 was also determined. Our results reveal a novel molecular pathway that regulates embryo/seed development and critical role of kinesin in temporal and spatial regulation of a specific issue of embryo developmental.
Collapse
Affiliation(s)
- Shujuan Tian
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Jingjing Wu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Fen Li
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianwei Zou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yuwen Liu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Bing Zhou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|