1
|
Wang M, Wang S, Cui J, Lian D, Li Y, Du Y, Li L. Interactions studies of CYP2D6 with quercetin and hyperoside by spectral analysis and molecular dynamics simulations. LUMINESCENCE 2024; 39:e4605. [PMID: 37795938 DOI: 10.1002/bio.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka ) values of CYP2D6-quercetin/hyperoside range from 104 L mol-1 , which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.
Collapse
Affiliation(s)
- Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuan Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yutong Du
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
2
|
Ridhwan MJM, Bakar SIA, Latip NA, Ghani NA, Ismail NH. A Comprehensive Analysis of Human CYP3A4 Crystal Structures as a Potential Tool for Molecular Docking-Based Site of Metabolism and Enzyme Inhibition Studies. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022; 21:259-285. [DOI: 10.1142/s2737416522300012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The notable ability of human liver cytochrome P450 3A4 (CYP3A4) to metabolize diverse xenobiotics encourages researchers to explore in-depth the mechanism of enzyme action. Numerous CYP3A4 protein crystal structures have been deposited in protein data bank (PDB) and are majorly used in molecular docking analysis. The quality of the molecular docking results depends on the three-dimensional CYP3A4 protein crystal structures from the PDB. Present review endeavors to provide a brief outline of some technical parameters of CYP3A4 PDB entries as valuable information for molecular docking research. PDB entries between 22 April 2004 and 2 June 2021 were compiled and the active sites were thoroughly observed. The present review identified 76 deposited PDB entries and described basic information that includes CYP3A4 from human genetic, Escherichia coli (E. coli) use for protein expression, crystal structure obtained from X-ray diffraction method, taxonomy ID 9606, Uniprot ID P08684, ligand–protein structure description, co-crystal ligand, protein site deposit and resolution ranges between 1.7[Formula: see text]Å and 2.95[Formula: see text]Å. The observation of protein–ligand interactions showed the various residues on the active site depending on the ligand. The residues Ala305, Ser119, Ala370, Phe304, Phe108, Phe213 and Phe215 have been found to frequently interact with ligands from CYP3A4 PDB. Literature surveys of 17 co-crystal ligands reveal multiple mechanisms that include competitive inhibition, noncompetitive inhibition, mixed-mode inhibition, mechanism-based inhibition, substrate with metabolite, inducer, or combination modes of action. This overview may help researchers choose a trustworthy CYP3A4 protein structure from the PDB database to apply the protein in molecular docking analysis for drug discovery.
Collapse
Affiliation(s)
- Mohamad Jemain Mohamad Ridhwan
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Syahrul Imran Abu Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Normala Abd Latip
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Nurunajah Ab Ghani
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| |
Collapse
|
3
|
Sonti S, Tyagi K, Pande A, Daniel R, Sharma AL, Tyagi M. Crossroads of Drug Abuse and HIV Infection: Neurotoxicity and CNS Reservoir. Vaccines (Basel) 2022; 10:vaccines10020202. [PMID: 35214661 PMCID: PMC8875185 DOI: 10.3390/vaccines10020202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Drug abuse is a common comorbidity in people infected with HIV. HIV-infected individuals who abuse drugs are a key population who frequently experience suboptimal outcomes along the HIV continuum of care. A modest proportion of HIV-infected individuals develop HIV-associated neurocognitive issues, the severity of which further increases with drug abuse. Moreover, the tendency of the virus to go into latency in certain cellular reservoirs again complicates the elimination of HIV and HIV-associated illnesses. Antiretroviral therapy (ART) successfully decreased the overall viral load in infected people, yet it does not effectively eliminate the virus from all latent reservoirs. Although ART increased the life expectancy of infected individuals, it showed inconsistent improvement in CNS functioning, thus decreasing the quality of life. Research efforts have been dedicated to identifying common mechanisms through which HIV and drug abuse lead to neurotoxicity and CNS dysfunction. Therefore, in order to develop an effective treatment regimen to treat neurocognitive and related symptoms in HIV-infected patients, it is crucial to understand the involved mechanisms of neurotoxicity. Eventually, those mechanisms could lead the way to design and develop novel therapeutic strategies addressing both CNS HIV reservoir and illicit drug use by HIV patients.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, Jaipur 304022, Rajasthan, India;
| | - Amit Pande
- Cell Culture Laboratory, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital 263136, Uttarakhand, India;
| | - Rene Daniel
- Farber Hospitalist Service, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Adhikarimayum Lakhikumar Sharma
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
- Correspondence: ; Tel.: +1-215-503-5157 or +1-703-909-9420
| |
Collapse
|
4
|
Novel Phenethylamines and Their Potential Interactions With Prescription Drugs: A Systematic Critical Review. Ther Drug Monit 2021; 42:271-281. [PMID: 32022784 DOI: 10.1097/ftd.0000000000000725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The novel phenethylamines 4-fluoroamphetamine (4-FA) and 2,5-dimethoxy-4-bromophenethylamine (2C-B) fall in the top 10 most used new psychoactive substances (NPSs) among high-risk substance users. Various phenethylamines and NPS are also highly used in populations with mental disorders, depression, or attention deficit hyperactivity disorder (ADHD). Moreover, NPS use is highly prevalent among men and women with risky sexual behavior. Considering these specific populations and their frequent concurrent use of drugs, such as antidepressants, ADHD medication, and antiretrovirals, reports on potential interactions between these drugs, and phenethylamines 4-FA and 2C-B, were reviewed. METHODS The authors performed a systematic literature review on 4-FA and 2C-B interactions with antidepressants (citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, duloxetine, bupropion, venlafaxine, phenelzine, moclobemide, and tranylcypromine), ADHD medications (atomoxetine, dexamphetamine, methylphenidate, and modafinil), and antiretrovirals. RESULTS Limited literature exists on the pharmacokinetics and drug-drug interactions of 2C-B and 4-FA. Only one case report indicated a possible interaction between 4-FA and ADHD medication. Although pharmacokinetic interactions between 4-FA and prescription drugs remain speculative, their pharmacodynamic points toward interactions between 4-FA and ADHD medication and antidepressants. The pharmacokinetic and pharmacodynamic profile of 2C-B also points toward such interactions, between 2C-B and prescription drugs such as antidepressants and ADHD medication. CONCLUSIONS A drug-drug (phenethylamine-prescription drug) interaction potential is anticipated, mainly involving monoamine oxidases for 2C-B and 4-FA, with monoamine transporters being more specific to 4-FA.
Collapse
|
5
|
Desai N, Burns L, Gong Y, Zhi K, Kumar A, Summers N, Kumar S, Cory TJ. An update on drug-drug interactions between antiretroviral therapies and drugs of abuse in HIV systems. Expert Opin Drug Metab Toxicol 2020; 16:1005-1018. [PMID: 32842791 DOI: 10.1080/17425255.2020.1814737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION While considerable progress has been made in the fight against HIV/AIDS, to date there has not been a cure, and millions of people around the world are currently living with HIV/AIDS. People living with HIV/AIDS have substance abuse disorders at higher rates than non-infected individuals, which puts them at an increased risk of drug-drug interactions. AREAS COVERED Potential drug-drug interactions are reviewed for a variety of potential drugs of abuse, both licit and illicit. These drugs include alcohol, cigarettes or other nicotine delivery systems, methamphetamine, cocaine, opioids, and marijuana. Potential interactions include decreased adherence, modulation of drug transporters, or modulation of metabolic enzymes. We also review the relative incidence of the use of these drugs of abuse in People living with HIV/AIDS. EXPERT OPINION Despite considerable improvements in outcomes, disparities in outcomes between PLWHA who use drugs of abuse, vs those who do not still exist. It is of critical necessity to improve outcomes in these patients and to work with them to stop abusing drugs of abuse.
Collapse
Affiliation(s)
- Nuti Desai
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Leah Burns
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Yuqing Gong
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center , Memphis, TN, USA
| | - Asit Kumar
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Nathan Summers
- Division of Infectious Diseases, University of Tennessee Health Science Center College of Medicine , Memphis, TN, USA
| | - Santosh Kumar
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| |
Collapse
|
6
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Exploring the Chemical Space of Cytochrome P450 Inhibitors Using Integrated Physicochemical Parameters, Drug Efficiency Metrics and Decision Tree Models. COMPUTATION 2019. [DOI: 10.3390/computation7020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cytochrome P450s (CYPs) play a central role in the metabolism of various endogenous and exogenous compounds including drugs. CYPs are vulnerable to inhibition and induction which can lead to adverse drug reactions. Therefore, insights into the underlying mechanism of CYP450 inhibition and the estimation of overall CYP inhibitor properties might serve as valuable tools during the early phases of drug discovery. Herein, we present a large data set of inhibitors against five major metabolic CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) for the evaluation of important physicochemical properties and ligand efficiency metrics to define property trends across various activity levels (active, efficient and inactive). Decision tree models for CYP inhibition were developed with an accuracy >90% for both the training set and 10-folds cross validation. Overall, molecular weight (MW), hydrogen bond acceptors/donors (HBA/HBD) and lipophilicity (clogP/logPo/w) represent important physicochemical descriptors for CYP450 inhibitors. However, highly efficient CYP inhibitors show mean MW, HBA, HBD and logP values between 294.18–482.40,5.0–8.2,1–7.29 and 1.68–2.57, respectively. Our results might help in optimization of toxicological profiles associated with new chemical entities (NCEs), through a better understanding of inhibitor properties leading to CYP-mediated interactions.
Collapse
|
8
|
Danielson ML, Hu B, Shen J, Desai PV. In Silico ADME Techniques Used in Early-Phase Drug Discovery. TRANSLATING MOLECULES INTO MEDICINES 2017. [DOI: 10.1007/978-3-319-50042-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8090267. [PMID: 27626447 PMCID: PMC5037493 DOI: 10.3390/toxins8090267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 01/10/2023] Open
Abstract
Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1) and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.
Collapse
|