1
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Zhou Y, Zhang Y, Han J, Yang M, Zhu J, Jin T. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med 2020; 18:131. [PMID: 32183811 PMCID: PMC7079408 DOI: 10.1186/s12967-020-02289-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Transitional B cells (TrB cells) represent a crucial link between immature B cells in the bone marrow and mature peripheral B cells. Although TrB cells represent one of the regulatory B cell subpopulations in healthy individuals, the frequency of CD24hiCD38hi TrB cells in circulation may be altered in individuals with autoimmune diseases, such as multiple sclerosis, neuromyelitisoptica spectrum disorders, systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, systemic sclerosis, and juvenile dermatomyositis. Although TrB cells play regulatory roles under inflammatory conditions, consequences of their functional impairment vary across autoimmune diseases. Since the origin, development, and function of TrB cells, especially in humans, remain unclear and controversial, this review aimed to discuss the characteristics of TrB cells at steady state and explore their role in various immune diseases, including autoimmune rheumatic diseases and neuroimmunological diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Mengge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
3
|
Garcia PS, Brum DG, Oliveira ON, Higa AM, Ierich JCM, Moraes ADS, Shimizu FM, Okuda-Shinagawa NM, Peroni LA, da Gama PD, Machini MT, Leite FL. Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy 2020; 211:112946. [PMID: 32028099 DOI: 10.1016/j.ultramic.2020.112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/02/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disorder in the central nervous system for which biomarkers for diagnosis still remain unknown. One potential biomarker is the myelin basic protein. Here, a nanoimmunosensor based on atomic force spectroscopy (AFS) successfully detected autoantibodies against the MBP85-99 peptide from myelin basic protein. The nanoimmunosensor consisted of an atomic force microscope tip functionalization with MBP85-99 peptide, which was made to interact with a mica surface coated either with a layer of anti-MBP85-99 (positive control) or samples of cerebrospinal fluid (CSF) from five multiple sclerosis (MS) patients at different stages of the disease and five non-MS subjects. The adhesion forces obtained from AFS pointed to a high concentration of anti-MBP85-99 for the two patients at early stages of relapsing-remitting multiple sclerosis (RRMS), which were indistinguishable from the positive control. In contrast, considerably lower adhesion forces were measured for all the other eight subjects, including three MS patients with longer history of the disease and under treatment, without episodes of acute MS activity. We have also shown that the average adhesion force between MBP85-99 and anti-MBP85-99 is compatible with the value estimated using steered molecular dynamics. Though further tests will be required with a larger cohort of patients, the present results indicate that the nanoimmunosensor may be a simple tool to detect early-stage MS patients and be useful to understand the molecular mechanisms behind MS.
Collapse
Affiliation(s)
- Pâmela Soto Garcia
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Doralina Guimarães Brum
- Department of Neurology, Psychology and Psychiatry, São Paulo State University, 18618-687, Botucatu, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Akemi Martins Higa
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Jéssica Cristiane Magalhães Ierich
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Ariana de Souza Moraes
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Flávio Makoto Shimizu
- São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Nancy M Okuda-Shinagawa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Luís Antonio Peroni
- Rheabiotech Laboratory Research and Development, 13084-791, Campinas, SP, Brazil
| | | | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Fabio Lima Leite
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil.
| |
Collapse
|
4
|
Getahun A, Cambier JC. Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annu Rev Cell Dev Biol 2019; 35:337-356. [PMID: 30883216 DOI: 10.1146/annurev-cellbio-100617-062518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| |
Collapse
|
5
|
Abstract
B cells mediate humoral immunity by producing antibody molecules, but they also participate in innate and acquired immune functions via the secretion of effector molecules such as cytokines, chemokines, and granzyme. B cell subpopulations releasing such effector molecules have been implicated in immunobiology and a number of diseases.Unlike antigen-specific T cells that can be identified by multimer staining, and then counter-stained to define T cell subpopulations, antigen-specific B cells cannot be detected by flow cytometry. Staining antigen-specific B cells with labeled antigen, in large, has been unsuccessful. Instead, antigen-specific B cells can be and are commonly studied by ELISPOT. In the ELISPOT approach, the B cell is identified via the antibody that it secretes being captured on a membrane by the antigen itself. Should it be feasible to measure simultaneously antibody production and the secretion of other secretory B cell products, it would then be possible to identify B cell subpopulations that co-express effector molecules. Here we introduce multiplex ELISPOT assays in which measurements of antibody secretion are combined with the detection of Granzyme B, IL-6, IL-10, IFN-γ, and TNF-α. Such multiplex assays will help define effector B cell subpopulations, as well as the understanding of their role in health and disease.
Collapse
|
6
|
Gudbrandsdottir S, Brimnes M, Køllgaard T, Hasselbalch HC, Nielsen CH. Effects of rituximab and dexamethasone on regulatory and proinflammatory B-cell subsets in patients with primary immune thrombocytopenia. Eur J Haematol 2017; 100:45-52. [PMID: 28960473 DOI: 10.1111/ejh.12978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the cytokine production and surface marker composition of B cells in adult patients with newly diagnosed primary immune thrombocytopenia (ITP) before and 12 months after treatment with rituximab + dexamethasone (RTX+DXM) or dexamethasone (DXM). METHODS Peripheral blood mononuclear cells were isolated from nine patients treated with RTX+DXM, seven patients treated with DXM, and seven healthy donors. Expression of the cell-surface markers CD5, CD27, CD25, and CD19, and intracellular content of IL-6 and IL-10 were measured by flow cytometry. RESULTS PBMCs from ITP patients at baseline contained a lower proportion of IL-10+ B cells (P < .01) and IL-6+ B cells (P < .01) than healthy controls. All patients responded to therapy and levels were normalized at 12 months. The proportion of CD5+ B cells increased (P < .01) and CD27+ memory B cells decreased (P < .05) 12 months after treatment with RTX+DXM compared to baseline, with an inverse correlation between platelet numbers and the proportion of CD27+ B cells (R = -0.71; P < .05). CONCLUSION Both treatment regimens normalized the frequencies of cytokine-producing B cells. The additional increase in CD5+ B cells after RTX+DXM is compatible with induction of Bregs.
Collapse
Affiliation(s)
- Sif Gudbrandsdottir
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Hematology, Roskilde Hospital, Copenhagen, Denmark
| | - Marie Brimnes
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tania Køllgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Reich RR, Lengacher CA, Klein TW, Newton C, Shivers S, Ramesar S, Alinat CB, Paterson C, Le A, Park JY, Johnson-Mallard V, Elias M, Moscoso M, Goodman M, Kip KE. A Randomized Controlled Trial of the Effects of Mindfulness-Based Stress Reduction (MBSR[BC]) on Levels of Inflammatory Biomarkers Among Recovering Breast Cancer Survivors. Biol Res Nurs 2017; 19:456-464. [PMID: 28460534 DOI: 10.1177/1099800417707268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The purpose of this substudy of a large randomized controlled trial was to evaluate the efficacy of the Mindfulness-Based Stress Reduction (Breast Cancer) (MBSR[BC]) program compared to usual care (UC) in normalizing blood levels of pro-inflammatory cytokines among breast cancer survivors (BCS). METHOD A total of 322 BCS were randomized to either a 6-week MBSR(BC) program or a UC. At baseline and 6 and 12 weeks, 10 ml of venous blood and demographic and clinical data were collected and/or updated. Plasma cytokines (interleukin [IL]-1β, IL-6, IL-10, tumor necrosis factor [TNF] α, transforming growth factor [TGF] β1, soluble tumor necrosis factor receptor [sTNFR] 1) were assayed. Linear mixed models were used to assess cytokine levels across three time points (baseline and 6 and 12 weeks) by group (MBSR[BC] vs. UC). RESULTS Of the six measured cytokines, three were nondetectable at rates greater than 50% (IL-10, IL-1β, TGF-β1) and, because of overall low prevalence, were not analyzed further. For the remaining cytokines (TNFα, IL-6, sTNFR1), results showed that TNFα and IL-6 increased during the follow-up period (between 6 and 12 weeks) rather than during the MBSR(BC) training period (between baseline and 6 weeks), while sTNFR1 levels did not change significantly across the 12-week period. CONCLUSIONS Study results suggest that MBSR(BC) affects cytokine levels in BCS, mainly with increases in TNFα and IL-6. The data further suggest that B-cell modulation may be a part of immune recovery during breast cancer management and that increases in TNFα and IL-6 may be markers for MBSR(BC)-related recovery.
Collapse
Affiliation(s)
- Richard R Reich
- 1 Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Thomas W Klein
- 3 Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cathy Newton
- 3 Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Steve Shivers
- 4 Breast Health Clinical and Research Integrated Strategic Program, University of South Florida, Tampa, FL, USA
| | - Sophia Ramesar
- 2 College of Nursing, University of South Florida, Tampa, FL, USA
| | - Carissa B Alinat
- 2 College of Nursing, University of South Florida, Tampa, FL, USA
| | | | - Alice Le
- 2 College of Nursing, University of South Florida, Tampa, FL, USA
| | - Jong Y Park
- 1 Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Maya Elias
- 2 College of Nursing, University of South Florida, Tampa, FL, USA
| | - Manolete Moscoso
- 2 College of Nursing, University of South Florida, Tampa, FL, USA
| | - Matthew Goodman
- 7 Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin E Kip
- 8 Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|