1
|
Gill R, Al-Badr M, Alghouti M, Mohamed NA, Abou-Saleh H, Rahman MM. Revolutionizing Cardiovascular Health with Nano Encapsulated Omega-3 Fatty Acids: A Nano-Solution Approach. Mar Drugs 2024; 22:256. [PMID: 38921567 PMCID: PMC11204627 DOI: 10.3390/md22060256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) offer diverse health benefits, such as supporting cardiovascular health, improving cognitive function, promoting joint and musculoskeletal health, and contributing to healthy aging. Despite their advantages, challenges like oxidation susceptibility, low bioavailability, and potential adverse effects at high doses persist. Nanoparticle encapsulation emerges as a promising avenue to address these limitations while preserving stability, enhanced bioavailability, and controlled release. This comprehensive review explores the therapeutic roles of omega-3 fatty acids, critically appraising their shortcomings and delving into modern encapsulation strategies. Furthermore, it explores the potential advantages of metal-organic framework nanoparticles (MOF NPs) compared to other commonly utilized nanoparticles in improving the therapeutic effectiveness of omega-3 fatty acids within drug delivery systems (DDSs). Additionally, it outlines future research directions to fully exploit the therapeutic benefits of these encapsulated omega-3 formulations for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Richa Gill
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mohammad Alghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nura Adam Mohamed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| |
Collapse
|
2
|
de Castro Leão M, di Piazza I, Caria SJ, Broering MF, Farsky SHP, Uchiyama MK, Araki K, Bonjour K, Cogliati B, Pohlmann AR, Guterres SS, Castro IA. Effect of nanocapsules containing docosahexaenoic acid in mice with chronic inflammation. Biomed Pharmacother 2023; 167:115474. [PMID: 37741249 DOI: 10.1016/j.biopha.2023.115474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Omega 3 fatty acids, such as docosahexaenoic acid (DHA) have been widely consumed as supplements to control chronic inflammation. Nanocapsules containing DHA (MLNC-DHA-a1) were developed and showed excellent stability. Thus, our objective was to evaluate the effect of MLNC-DHA-a1 nanocapsules on biomarkers of chronic inflammation. METHODS Cells viability was determined by flow cytometry. The uptake of MLNC-DHA-a1 nanocapsules by macrophages and their polarization were determined. In vivo, LDLr(-,-) mice were fed a Western diet to promote chronic inflammation and were treated with MLNC-DHA-a1 nanocapsules, intravenously injected via the caudal vein once a week for 8 weeks. RESULTS MLNC-DHA-a1 nanocapsules decreased the concentration of TNFα (p = 0.02) in RAW 264.7 cells compared to the non-treated group (NT), with no changes in IL-10 (p = 0.29). The nanocapsules also exhibited an increase in the M2 (F4/80+ CD206) phenotype (p < 0.01) in BMDM cells. In vivo, no difference in body weight was observed among the groups, suggesting that the intervention was well tolerated. However, compared to the CONT group, MLNC-DHA-a1 nanocapsules led to an increase in IL-6 (90.45 ×13.31 pg/mL), IL-1β (2.76 ×1.34 pg/mL) and IL-10 (149.88 ×2.51 pg/mL) levels in plasma. CONCLUSION MLNC-DHA-a1 nanocapsules showed the potential to promote in vitro macrophage polarization and were well-tolerated in vivo. However, they also increased systemic pro-inflammatory cytokines. Therefore, considering that this immune response presents a limitation for clinical trials, further studies are needed to identify the specific compound in MLNC-DHA-a1 that triggered the immune response. Addressing this issue is essential, as MLNC-DHA-a1 tissue target nanocapsules could contribute to reducing chronic inflammation.
Collapse
Affiliation(s)
- Matheus de Castro Leão
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Isabella di Piazza
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sarah Jorge Caria
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Milena Fronza Broering
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kennedy Bonjour
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia Stanisçuaski Guterres
- Department of Production and Drugs Control, Pharmaceutical Faculty, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Inar Alves Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lankala CR, Yasir M, Ishak A, Mekhail M, Kalyankar P, Gupta K. Application of Nanotechnology for Diagnosis and Drug Delivery in Atherosclerosis: A New Horizon of Treatment. Curr Probl Cardiol 2023; 48:101671. [PMID: 36828044 DOI: 10.1016/j.cpcardiol.2023.101671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide, with atherosclerosis being a prominent risk factor for their development. The current diagnostic criteria for atherosclerosis rely primarily on imaging techniques, including an angiogram. However, current diagnostic procedures fail to provide insights into the plaque's burden and composition. Therefore, nanotechnology is recommended as a novel drug delivery method in treating atherosclerosis and resulting cardiovascular diseases to enhance clinical outcomes. This review discusses the different approaches in which nanotechnology can be applied in the diagnosis and drug delivery of cardiovascular diseases. A systematic review was carried out in line with the PRISMA reporting guidelines, with the literature databases PubMed, Scopus, and Web of Science being screened for relevant literature. Any study that discussed and reported on the application of nanotechnology for either the diagnosis or drug delivery in atherosclerotic patients was included in this review, with each novel design identified in the citations being contrasted to that of the other literature. Moreover, the efficacy of this technology was compared to current diagnostic and drug delivery methods. The search strategy yielded 14 studies relevant to the aims of this review. Nine assessed the therapeutic applications of nanotechnology, 3 solely assessed the diagnostic applications of nanotechnology, and 2 discussed the diagnostic and therapeutic applications. The nanoparticle designs differed significantly between studies; however, all noted a superior therapeutic and diagnostic benefit compared to current approaches to diagnosing and treating atherosclerosis. Multifunctional nanoparticles are a feasible and appropriate novel approach to diagnosing and treating atherosclerosis.
Collapse
Affiliation(s)
- Chetan Reddy Lankala
- Department of Internal Medicine, Uzhhorod National University, Uzhhorod, Ukraine
| | - Mohamed Yasir
- Department of Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, CA.
| | - Angela Ishak
- Department of Research and Academic Affairs, Larkin Health System, South Miami, Florida
| | - Mario Mekhail
- Department of Internal Medicine, NYU Langone Long Island Community Hospital
| | - Pravin Kalyankar
- Department of Internal Medicine, Fortis Escorts Hospital, Faridabad, Haryana, India
| | - Kamal Gupta
- Department of Cardiology, Fortis Escorts Hospital, Faridabad, Haryana, India
| |
Collapse
|
5
|
Soumya RS, Raghu KG. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J Cardiol 2023; 81:10-18. [PMID: 35210166 DOI: 10.1016/j.jjcc.2022.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/09/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Nanoparticles are exclusively suitable for studying and developing potential therapies against cardiovascular diseases (CVD) because of their size, fine-tunable properties, and ability to incorporate therapeutic and imaging modalities. Recent advancements in nanomaterials open new avenues for treating CVD. In cardiology, the use of nanoparticles and nanocarriers has gathered significant consideration owing to characteristic features such as active and passive targeting to the cardiac tissues, greater target specificity, and sensitivity. It has been reported that through the use of nanotechnology, more than 50% of CVDs can be treated efficiently. Heart-targeted nano carrier-based drug delivery is an effective and efficient approach for treating cardiac-related disorders such as atherosclerosis, hypertension, and myocardial infarction. In this review, the authors focus on nanoparticle-based therapies used in CVD and provide an outline of essential knowledge and critical concerns on polymer-based nanomaterials in treating CVD.
Collapse
Affiliation(s)
- Rema Sreenivasan Soumya
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
6
|
Mohamed NA, Marei I, Crovella S, Abou-Saleh H. Recent Developments in Nanomaterials-Based Drug Delivery and Upgrading Treatment of Cardiovascular Diseases. Int J Mol Sci 2022; 23:1404. [PMID: 35163328 PMCID: PMC8836006 DOI: 10.3390/ijms23031404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.
Collapse
Affiliation(s)
- Nura A. Mohamed
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Isra Marei
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK;
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Doha P.O. Box 24144, Qatar
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Zeng F, Du M, Chen Z. Nanosized Contrast Agents in Ultrasound Molecular Imaging. Front Bioeng Biotechnol 2021; 9:758084. [PMID: 34912789 PMCID: PMC8666542 DOI: 10.3389/fbioe.2021.758084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Applying nanosized ultrasound contrast agents (nUCAs) in molecular imaging has received considerable attention. nUCAs have been instrumental in ultrasound molecular imaging to enhance sensitivity, identification, and quantification. nUCAs can achieve high performance in molecular imaging, which was influenced by synthetic formulations and size. This review presents an overview of nUCAs from different synthetic formulations with a discussion on imaging and detection technology. Then we also review the progress of nUCAs in preclinical application and highlight the recent challenges of nUCAs.
Collapse
Affiliation(s)
- Fengyi Zeng
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep 2021; 14:42. [PMID: 33728048 DOI: 10.3892/br.2021.1418] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Nanotechnology is the exploitation of the unique properties of materials at the nanoscale. Nanotechnology has gained popularity in several industries, as it offers better built and smarter products. The application of nanotechnology in medicine and healthcare is referred to as nanomedicine, and it has been used to combat some of the most common diseases, including cardiovascular diseases and cancer. The present review provides an overview of the recent advances of nanotechnology in the aspects of imaging and drug delivery.
Collapse
Affiliation(s)
- Serjay Sim
- School of Health Sciences, Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Nyet Kui Wong
- School of Health Sciences, Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
9
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
10
|
Nanotherapies for Treatment of Cardiovascular Disease: A Case for Antioxidant Targeted Delivery. CURRENT PATHOBIOLOGY REPORTS 2019; 7:47-60. [PMID: 31396435 DOI: 10.1007/s40139-019-00196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Cardiovascular disease (CVD) involves a broad range of clinical manifestations resulting from a dysfunctional vascular system. Overproduction of reactive oxygen and nitrogen species are causally implicated in the severity of vascular dysfunction and CVD. Antioxidant therapy is an attractive avenue for treatment of CVD associated pathologies. Implementation of targeted nano-antioxidant therapies has the potential to overcome hurdles associated with systemic delivery of antioxidants. This review examines the currently available options for nanotherapeutic targeting CVD, and explores successful studies showcasing targeted nano-antioxidant therapy. Recent Findings Active targeting strategies in the context of CVD heavily focus on immunotargeting to inflammatory markers like cell adhesion molecules, or to exposed extracellular matrix components. Targeted antioxidant nanotherapies have found success in pre-clinical studies. Summary This review underscores the potential of targeted nanocarriers as means of finding success translating antioxidant therapies to the clinic, all with a focus on CVD.
Collapse
|
11
|
Serini S, Cassano R, Trombino S, Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int J Nanomedicine 2019; 14:2809-2828. [PMID: 31114196 PMCID: PMC6488162 DOI: 10.2147/ijn.s197499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach – based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer – has been recently employed to develop ω-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase the activities of the compounds contained in the nanoformulation and to reduce the adverse effects often induced by drugs. We herein analyze the results of papers evaluating the potential use of ω-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. Future directions in this field of research are also provided.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| |
Collapse
|
12
|
Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as Therapeutic Agents and Targets. Front Physiol 2018; 9:1262. [PMID: 30356745 PMCID: PMC6189416 DOI: 10.3389/fphys.2018.01262] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
It has recently been reported that thousands of covalently linked circular RNAs (circRNAs) are expressed from human genomes. circRNAs emerge during RNA splicing. circRNAs are circularized in a reaction termed "backsplicing," whereby the spliceosome fuses a splice donor site in a downstream exon to a splice acceptor site in an upstream exon. Although a young field of research, first studies indicate that backsplicing is not an erroneous reaction of the spliceosome. Instead, circRNAs are produced in cells with high cell-type specificity and can exert biologically meaningful and specific functions. These observations and the finding that circRNAs are stable against exonucleolytic decay are raising the question whether circRNAs may be relevant as therapeutic agents and targets. In this review, we start out with a short introduction into classification, biogenesis and general molecular mechanisms of circRNAs. We then describe reports, where manipulating circRNA abundance has been shown to have therapeutic value in animal disease models in vivo, with a focus on cardiovascular disease (CVD). Starting from existing approaches, we outline particular challenges and opportunities for future circRNA-based therapeutic approaches that exploit stability and molecular effector functions of native circRNAs. We end with considerations which designer functions could be engineered into artificial therapeutic circular RNAs.
Collapse
Affiliation(s)
| | | | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is now considered a chronic inflammatory disease. Oxidative stress induced by generation of excess reactive oxygen species has emerged as a critical, final common mechanism in atherosclerosis. Reactive oxygen species (ROS) are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. Although essential for vascular homeostasis, uncontrolled production of ROS is implicated in vascular injury. Endogenous anti-oxidants function as checkpoints to avoid these untoward consequences of ROS, and an imbalance in the oxidant/anti-oxidant mechanisms leads to a state of oxidative stress. In this review, we discuss the role of ROS and anti-oxidant mechanisms in the development and progression of atherosclerosis, the role of oxidized low-density lipoprotein cholesterol, and highlight potential anti-oxidant therapeutic strategies relevant to atherosclerosis. RECENT FINDINGS There is growing evidence on how traditional risk factors translate into oxidative stress and contribute to atherosclerosis. Clinical trials evaluating anti-oxidant supplements had failed to improve atherosclerosis. Current studies focus on newer ROS scavengers that specifically target mitochondrial ROS, newer nanotechnology-based drug delivery systems, gene therapies, and anti-miRNAs. Synthetic LOX-1 modulators that inhibit the effects of Ox-LDL are currently in development. Research over the past few decades has led to identification of multiple ROS generating systems that could potentially be modulated in atherosclerosis. Therapeutic approaches currently being used for atheroslcerotic vascular disease such as aspirin, statins, and renin-angiotensin system inhibitors exert a pleiotropic antioxidative effects. There is ongoing research to identify novel therapeutic modalities to selectively target oxidative stress in atherosclerosis.
Collapse
|
14
|
Deshpande D, Janero DR, Segura-Ibarra V, Blanco E, Amiji MM. Nucleic Acid Delivery for Endothelial Dysfunction in Cardiovascular Diseases. Methodist Debakey Cardiovasc J 2017; 12:134-140. [PMID: 27826366 DOI: 10.14797/mdcj-12-3-134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction has been implicated in the pathophysiology of multiple cardiovascular diseases and involves components of both innate and acquired immune mechanisms. Identifying signature patterns and targets associated with endothelial dysfunction can help in the development of novel nanotherapeutic platforms for treatment of vascular diseases. This review discusses nucleic acid-based regulation of endothelial function and the different nucleic acid-based nanotherapeutic approaches designed to target endothelial dysfunction in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | | | - Elvin Blanco
- Houston Methodist Research Institute, Houston, Texas
| | - Mansoor M Amiji
- Northeastern University, Boston, Massachusetts; King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med 2017; 6:E22. [PMID: 28230726 PMCID: PMC5332926 DOI: 10.3390/jcm6020022] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished.
Collapse
Affiliation(s)
- Karla Cervantes Gracia
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Daniel Llanas-Cornejo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
16
|
Martín Giménez VM, Kassuha DE, Manucha W. Nanomedicine applied to cardiovascular diseases: latest developments. Ther Adv Cardiovasc Dis 2017; 11:133-142. [PMID: 28198204 DOI: 10.1177/1753944717692293] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a major cause of disability and they are currently responsible for a significant number of deaths in a large percentage of the world population. A large number of therapeutic options have been developed for the management of cardiovascular diseases. However, they are insufficient to stop or significantly reduce the progression of these diseases, and may produce unpleasant side effects. In this situation, the need arises to continue exploring new technologies and strategies in order to overcome the disadvantages and limitations of conventional therapeutic options. Thus, treatment of cardiovascular diseases has become one of the major focuses of scientific and technological development in recent times. More specifically, there have been important advances in the area of nanotechnology and the controlled release of drugs, destined to circumvent many limitations of conventional therapies for the treatment of diseases such as hyperlipidemia, hypertension, myocardial infarction, stroke and thrombosis.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Diego E Kassuha
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.,Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina
| |
Collapse
|