1
|
Ding M, Zhang Y, Xu X, Zhu Y, He H, Jiang T, Huang Y, Yu W, Ou H. Acid sphingomyelinase recruits palmitoylated CD36 to membrane rafts and enhances lipid uptake. J Biol Chem 2025:110213. [PMID: 40348192 DOI: 10.1016/j.jbc.2025.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
CD36 palmitoylation increases its membrane localization and is required for CD36-mediated uptake of oxidized low-density lipoprotein (oxLDL). Acid sphingomyelinase (ASMase) is transported to the plasma membrane, where it promotes lipid raft clustering, facilitating membrane protein anchoring for biological functions. We here investigated the effects of oxLDL on CD36 palmitoylation and explored the role of ASMase in CD36 membrane translocation. We found that oxLDL increased CD36 palmitoylation and drives its intracellular trafficking from the endoplasmic reticulum to plasma membrane lipid rafts in macrophages. Affinity purification followed by mass spectrometry analysis identified CD36 bound to ASMase in plasma membrane. The CD36/ASMase binding was enhanced by oxLDL treatment. Genetic ablation and pharmacological inhibition of ASMase reduced CD36 recruitment to lipid rafts, and inhibited CD36 intracellular signaling and lipid uptake. Moreover, inhibiting Sortilin to block ASMase intracellular trafficking and reduce membrane ASMase also caused a sharp decrease in amount of membrane CD36. In addition, ASMase overexpression dramatically promoted palmitoylated CD36 membrane localization but not CD36 without palmitoylation, in which the modification was inhibited by 2-bromopalmitate (2-BP) treatment or point mutation at the palmitoylation site. Moreover, ASMase knockout inhibited CD36 membrane recruitment both in peritoneal macrophages and in aorta, and attenuated lipid accumulation in atherosclerotic plaques in mice. Finally, we found oxLDL activated extracellular signal-regulated kinase1/2 (ERK1/2)/specificity protein (SP1) signaling, upregulating ASMase transcription and promoting sphingomyelin catabolism. Therefore, these data demonstrate that ASMase expression induced by oxLDL is required for palmitoylated CD36 membrane translocation during foam cell formation in macrophages.
Collapse
Affiliation(s)
- Meng Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Yun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Xiaoting Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Yuan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Hui He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Tianyu Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Yashuang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Wenfeng Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China
| | - Hailong Ou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, China.
| |
Collapse
|
2
|
Cai Z, Deng L, Fan Y, Ren Y, Ling Y, Tu J, Cai Y, Xu X, Chen M. Dysregulation of Ceramide Metabolism Is Linked to Iron Deposition and Activation of Related Pathways in the Aorta of Atherosclerotic Miniature Pigs. Antioxidants (Basel) 2023; 13:4. [PMID: 38275624 PMCID: PMC10812416 DOI: 10.3390/antiox13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
The miniature pig is a suitable animal model for investigating human cardiovascular diseases. Nevertheless, the alterations in lipid metabolism within atherosclerotic plaques of miniature pigs, along with the underlying mechanisms, remain to be comprehensively elucidated. In this study, we aim to examine the alterations in lipid composition and associated pathways in the abdominal aorta of atherosclerotic pigs induced by a high-fat, high-cholesterol, and high-fructose (HFCF) diet using lipidomics and RNA-Seq methods. The results showed that the content and composition of aortic lipid species, particularly ceramide, hexosyl ceramide, lysophosphatidylcholine, and triglyceride, were significantly altered in HFCF-fed pigs. Meanwhile, the genes governing sphingolipid metabolism, iron ion homeostasis, apoptosis, and the inflammatory response were significantly regulated by the HFCF diet. Furthermore, C16 ceramide could promote iron deposition in RAW264.7 cells, leading to increased intracellular reactive oxygen species (ROS) production, apoptosis, and activation of the toll-like receptor 4 (TLR4)/nuclear Factor-kappa B (NF-қB) inflammatory pathway, which could be mitigated by deferoxamine. Our study demonstrated that dysregulated ceramide metabolism could increase ROS production, apoptosis, and inflammatory pathway activation in macrophages by inducing iron overload, thus playing a vital role in the pathogenesis of atherosclerosis. This discovery could potentially provide a new target for pharmacological therapy of cardiovascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Liqun Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yingying Fan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yujie Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yun Ling
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Yueqin Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Xiaoping Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| |
Collapse
|
3
|
Li T, Yang X, Zhu J, Liu Y, Jin X, Chen G, Ye L. Current application status and structure-activity relationship of selective and non-selective JAK inhibitors in diseases. Int Immunopharmacol 2023; 122:110660. [PMID: 37478665 DOI: 10.1016/j.intimp.2023.110660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
JAK kinase includes four family members: JAK1, JAK2, JAK3, and TYK2. It forms the JAK-STAT pathway with signal transmitters and activators of subscription (STAT). This pathway is one of the main mechanisms by which many cytokine receptors transduce intracellular signals, it is associated with the occurrence of various immune, inflammatory, and tumor diseases. JAK inhibitors block the signal transduction of the JAK-STAT pathway by targeting JAK kinase. Based on whether they target multiple subtypes of JAK kinase, JAK inhibitors are categorized into pan-JAK inhibitors and selective JAK inhibitors. Compared with pan JAK inhibitors, selective JAK inhibitors are associated with a specific member, thus more targeted in therapy, with improved efficacy and reduced side effects. Currently, a number of JAK inhibitors have been approval for disease treatment. This review summarized the current application status of JAK inhibitors that have been marketed, advances of JAK inhibitors currently in phase Ш clinical trials, and the structure-activity relationship of them, with an intention to provide references for the development of novel JAK inhibitors.
Collapse
Affiliation(s)
- Tong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianjing Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juan Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Liu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Lan YY, Chen YH, Liu C, Tung KL, Wu YT, Lin SC, Wu CH, Chang HY, Chen YC, Huang BM. Role of JNK activation in paclitaxel-induced apoptosis in human head and neck squamous cell carcinoma. Oncol Lett 2021; 22:705. [PMID: 34457060 PMCID: PMC8358625 DOI: 10.3892/ol.2021.12966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Cheng Liu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C.,Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Kuo-Lung Tung
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Yen-Ting Wu
- Department of Pathology, Golden Hospital, Pingtung 90049, Taiwan, R.O.C
| | - Sheng-Chieh Lin
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chin-Han Wu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
5
|
Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines 2021; 9:biomedicines9060643. [PMID: 34200091 PMCID: PMC8226770 DOI: 10.3390/biomedicines9060643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with the development of microcephaly, intrauterine growth restriction, and ocular damage in the fetus. ZIKV infection of the placenta plays a crucial role in the vertical transmission from the maternal circulation to the fetus. Our previous study suggested that ZIKV induces endoplasmic reticulum (ER) stress and apoptosis of placental trophoblasts. Here, we showed that palmitoleate, an omega-7 monounsaturated fatty acid, prevents ZIKV-induced ER stress and apoptosis in placental trophoblasts. Human trophoblast cell lines (JEG-3 and JAR) and normal immortalized trophoblasts (HTR-8) were used. We observed that ZIKV infection of the trophoblasts resulted in apoptosis and treatment of palmitoleate to ZIKV-infected cells significantly prevented apoptosis. However, palmitate (saturated fatty acid) did not offer protection from ZIKV-induced ER stress and apoptosis. We also observed that the Zika viral RNA copies were decreased, and the cell viability improved in ZIKV-infected cells treated with palmitoleate as compared to the infected cells without palmitoleate treatment. Further, palmitoleate was shown to protect against ZIKV-induced upregulation of ER stress markers, C/EBP homologous protein and X-box binding protein-1 splicing in placental trophoblasts. In conclusion, our studies suggest that palmitoleate protects placental trophoblasts against ZIKV-induced ER stress and apoptosis.
Collapse
|
6
|
Muthuraj PG, Sahoo PK, Kraus M, Bruett T, Annamalai AS, Pattnaik A, Pattnaik AK, Byrareddy SN, Natarajan SK. Zika virus infection induces endoplasmic reticulum stress and apoptosis in placental trophoblasts. Cell Death Discov 2021; 7:24. [PMID: 33500388 PMCID: PMC7838309 DOI: 10.1038/s41420-020-00379-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Zika virus (ZIKV) infection to a pregnant woman can be vertically transmitted to the fetus via the placenta leading to Congenital Zika syndrome. This is characterized by microcephaly, retinal defects, and intrauterine growth retardation. ZIKV induces placental trophoblast apoptosis leading to severe abnormalities in the growth and development of the fetus. However, the molecular mechanism behind ZIKV-induced apoptosis in placental trophoblasts remains unclear. We hypothesize that ZIKV infection induces endoplasmic reticulum (ER) stress in the trophoblasts, and sustained ER stress results in apoptosis. HTR-8 (HTR-8/SVneo), a human normal immortalized trophoblast cell and human choriocarcinoma-derived cell lines (JEG-3 and JAR) were infected with ZIKV. Biochemical and structural markers of apoptosis like caspase 3/7 activity and percent apoptotic nuclear morphological changes, respectively were assessed. ZIKV infection in placental trophoblasts showed an increase in the levels of CHOP mRNA and protein expression, which is an inducer of apoptosis. Next, we also observed increased levels of ER stress markers such as phosphorylated forms of inositol-requiring transmembrane kinase/endoribonuclease 1α (P-IRE1α), and its downstream target, the spliced form of XBP1 mRNA, phosphorylated eukaryotic initiation factor 2α (P-eIF2α), and activation of cJun N-terminal Kinase (JNK) and p38 mitogen activated protein kinase (MAPK) after 16-24 h of ZIKV infection in trophoblasts. Inhibition of JNK or pan-caspases using small molecule inhibitors significantly prevented ZIKV-induced apoptosis in trophoblasts. Further, JNK inhibition also reduced XBP1 mRNA splicing and viral E protein staining in ZIKV infected cells. In conclusion, the mechanism of ZIKV-induced placental trophoblast apoptosis involves the activation of ER stress and JNK activation, and the inhibition of JNK dramatically prevents ZIKV-induced trophoblast apoptosis.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Prakash K Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madison Kraus
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Taylor Bruett
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Arun S Annamalai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Aryamav Pattnaik
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Asit K Pattnaik
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Pharmacology and Experimental Therapeutics, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
8
|
Fingolimod Affects Transcription of Genes Encoding Enzymes of Ceramide Metabolism in Animal Model of Alzheimer's Disease. Mol Neurobiol 2020; 57:2799-2811. [PMID: 32356173 PMCID: PMC7253528 DOI: 10.1007/s12035-020-01908-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The imbalance in sphingolipid signaling may be critically linked to the upstream events in the neurodegenerative cascade of Alzheimer’s disease (AD). We analyzed the influence of mutant (V717I) amyloid β precursor protein (AβPP) transgene on sphingolipid metabolism enzymes in mouse hippocampus. At 3 months of age AβPP/Aβ presence upregulated enzymes of ceramide turnover on the salvage pathway: ceramide synthases (CERS2, CERS4, CERS6) and also ceramidase ACER3. At 6 months, only CERS6 was elevated, and no ceramide synthase was increased at 12 months. However, sphingomyelin synthases, which utilize ceramide on the sphingomyelinase pathway, were reduced (SGMS1 at 12 and SGMS2 at 6 months). mRNAs for sphingomyelin synthases SGMS1 and SGMS2 were also significantly downregulated in human AD hippocampus and neocortex when compared with age-matched controls. Our findings suggest early-phase deregulation of sphingolipid homeostasis in favor of ceramide signaling. Fingolimod (FTY720), a modulator of sphingosine-1-phosphate receptors countered the AβPP-dependent upregulation of hippocampal ceramide synthase CERS2 at 3 months. Moreover, at 12 months, FTY720 increased enzymes of ceramide-sphingosine turnover: CERS4, ASAH1, and ACER3. We also observed influence of fingolimod on the expression of the sphingomyelinase pathway enzymes. FTY720 counteracted the AβPP-linked reduction of sphingomyelin synthases SGMS1/2 (at 12 and 6 months, respectively) and led to elevation of sphingomyelinase SMPD2 (at 6 and 12 months). Therefore, our results demonstrate potentially beneficial, age-specific effects of fingolimod on transcription of sphingolipid metabolism enzymes in an animal model of AD.
Collapse
|
9
|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21010307. [PMID: 31906427 PMCID: PMC6981703 DOI: 10.3390/ijms21010307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets.
Collapse
|
10
|
Hamano H, Ikeda Y, Watanabe H, Horinouchi Y, Izawa-Ishizawa Y, Imanishi M, Zamami Y, Takechi K, Miyamoto L, Ishizawa K, Tsuchiya K, Tamaki T. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant 2019; 33:586-597. [PMID: 28992067 DOI: 10.1093/ndt/gfx252] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background Hepcidin secreted by hepatocytes is a key regulator of iron metabolism throughout the body. Hepcidin concentrations are increased in chronic kidney disease (CKD), contributing to abnormalities in iron metabolism. Levels of indoxyl sulfate (IS), a uremic toxin, are also elevated in CKD. However, the effect of IS accumulation on iron metabolism remains unclear. Methods We used HepG2 cells to determine the mechanism by which IS regulates hepcidin concentrations. We also used a mouse model of adenine-induced CKD. The CKD mice were divided into two groups: one was treated using AST-120 and the other received no treatment. We examined control mice, CKD mice, CKD mice treated using AST-120 and mice treated with IS via drinking water. Results In the in vitro experiments using HepG2 cells, IS increased hepcidin expression in a dose-dependent manner. Silencing of the aryl hydrocarbon receptor (AhR) inhibited IS-induced hepcidin expression. Furthermore, IS induced oxidative stress and antioxidant drugs diminished IS-induced hepcidin expression. Adenine-induced CKD mice demonstrated an increase in hepcidin concentrations; this increase was reduced by AST-120, an oral adsorbent of the uremic toxin. CKD mice showed renal anemia, decreased plasma iron concentration, increased plasma ferritin and increased iron content in the spleen. Ferroportin was decreased in the duodenum and increased in the spleen. These changes were ameliorated by AST-120 treatment. Mice treated by direct IS administration showed hepatic hepcidin upregulation. Conclusions IS affects iron metabolism in CKD by participating in hepcidin regulation via pathways that depend on AhR and oxidative stress.
Collapse
Affiliation(s)
- Hirofumi Hamano
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
11
|
Tang CH, Lin CY, Tsai YL, Lee SH, Wang WH. Lipidomics as a diagnostic tool of the metabolic and physiological state of managed whales: A correlation study of systemic metabolism. Zoo Biol 2018; 37:440-451. [PMID: 30457161 DOI: 10.1002/zoo.21452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/09/2018] [Accepted: 10/09/2018] [Indexed: 11/06/2022]
Abstract
Integrating multifactor blood analysis is a key step toward a precise diagnosis of the health status of marine mammals. Variations in the circulating lipid profile reflect changes in the metabolism and physiology of an individual. To demonstrate the practicability of lipid profiling for physiological assessment, the phosphorylcholine-containing lipids in the plasma of long-term managed beluga whales (Delphinapterus leucas) were profiled using a lipidomics methodology. Using a multivariate analysis, the mean corpuscular volume, cholesterol, potassium, and γ-glutamyltranspeptidase levels were well modeled with the lipid profile of the female whales. In the models, the correlated lipids provided information about blood parameter-related metabolism and physiological regulation, in particular relating to cholesterol and inflammation. In the males, the levels of cholesterol, triglycerides, blood urea nitrogen, creatinine, plasma iron, and segmented neutrophil were well modeled with the lipid profile. In addition to providing information about the related metabolism and regulation, through a cross-linked analysis of the blood parameters, the correlated lipids indicated a parallel regulation involved in the energy metabolism of the male whales. Lipidomics as a method for revealing the context of physiological change shows practical potential for the health care of managed whales.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- Department of Biology, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine and Animal Hospital, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Hui Lee
- Central of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Wei-Hsien Wang
- Department of Biology, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
JNK facilitates IL-1β-induced hepcidin transcription via JunB activation. Cytokine 2018; 111:295-302. [DOI: 10.1016/j.cyto.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
|
13
|
Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040113. [PMID: 30360386 PMCID: PMC6315991 DOI: 10.3390/ph11040113] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Maintenance of iron homeostasis is critical to cellular health as both its excess and insufficiency are detrimental. Likewise, lipids, which are essential components of cellular membranes and signaling mediators, must also be tightly regulated to hinder disease progression. Recent research, using a myriad of model organisms, as well as data from clinical studies, has revealed links between these two metabolic pathways, but the mechanisms behind these interactions and the role these have in the progression of human diseases remains unclear. In this review, we summarize literature describing cross-talk between iron and lipid pathways, including alterations in cholesterol, sphingolipid, and lipid droplet metabolism in response to changes in iron levels. We discuss human diseases correlating with both iron and lipid alterations, including neurodegenerative disorders, and the available evidence regarding the potential mechanisms underlying how iron may promote disease pathogenesis. Finally, we review research regarding iron reduction techniques and their therapeutic potential in treating patients with these debilitating conditions. We propose that iron-mediated alterations in lipid metabolic pathways are involved in the progression of these diseases, but further research is direly needed to elucidate the mechanisms involved.
Collapse
|
14
|
Musso G, Cassader M, Paschetta E, Gambino R. Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology 2018; 155:282-302.e8. [PMID: 29906416 DOI: 10.1053/j.gastro.2018.06.031] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing worldwide, yet there are no effective treatments. A decade has passed since the initial lipidomics analyses of liver tissues from patients with nonalcoholic fatty liver disease. We have learned that liver cells from patients with NASH have an abnormal lipid composition and that the accumulation of lipids leads to organelle dysfunction, cell injury and death, and chronic inflammation, called lipotoxicity. We review the lipid species and metabolic pathways that contribute to the pathogenesis of NASH and potential therapeutic targets, including enzymes involved in fatty acid and triglyceride synthesis, bioactive sphingolipids and polyunsaturated-derived eicosanoids, and specialized pro-resolving lipid mediators. We discuss the concept that NASH is a disease that can resolve and the roles of lipid molecules in the resolution of inflammation and regression of fibrosis.
Collapse
Affiliation(s)
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | | | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Liu YS, Huang H, Zhou SM, Tian HJ, Li P. Excessive Iron Availability Caused by Disorders of Interleukin-10 and Interleukin-22 Contributes to High Altitude Polycythemia. Front Physiol 2018; 9:548. [PMID: 29872401 PMCID: PMC5972294 DOI: 10.3389/fphys.2018.00548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Because the pathogenesis of high altitude polycythemia (HAPC) is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause. Methods: We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR), ferritin, and hepcidin as well as erythropoietin (EPO) and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected. The in vitro effects of some cytokines on hematopoietic cells were also observed. Results: Iron mobilization and utilization were enhanced in people who had lived at high altitudes for a long time. Notably, both the iron storage in ferritin and the available iron in the blood were elevated in patients with HAPC compared with the healthy high-altitude migrants. The correlation analysis indicated that the decreased hepcidin may have contributed to enhanced iron availability in HAPC, and decreased interleukin (IL)-10 and IL-22 were significantly associated with decreased hepcidin. The results of the animal experiments confirmed that a certain degree of iron redundancy may promote bone marrow erythropoiesis and peripheral red blood cell production in hypoxic mice and that decreased IL-10 and IL-22 stimulated iron mobilization during hypoxia by affecting hepcidin expression. Conclusion: These data demonstrated, for the first time, that an excess of obtainable iron caused by disordered IL-10 and IL-22 was involved in the pathogenesis of some HAPC patients. The potential benefits of iron removal and immunoregulation for the prevention and treatment of HAPC deserve further research.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Department of High Altitude Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China.,Department of Medical Geography, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Physiology and High Altitude Disease, Chinese People's Liberation Army, Chongqing, China
| | - He Huang
- Department of High Altitude Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Physiology and High Altitude Disease, Chinese People's Liberation Army, Chongqing, China
| | - Si-Min Zhou
- Department of High Altitude Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Physiology and High Altitude Disease, Chinese People's Liberation Army, Chongqing, China
| | - Huai-Jun Tian
- Department of High Altitude Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Physiology and High Altitude Disease, Chinese People's Liberation Army, Chongqing, China
| | - Peng Li
- Department of High Altitude Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Physiology and High Altitude Disease, Chinese People's Liberation Army, Chongqing, China
| |
Collapse
|
16
|
Vela D. Low hepcidin in liver fibrosis and cirrhosis; a tale of progressive disorder and a case for a new biochemical marker. Mol Med 2018; 24:5. [PMID: 30134796 PMCID: PMC6016890 DOI: 10.1186/s10020-018-0008-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a precursor of liver cirrhosis, which is associated with increased mortality. Though liver biopsy remains the gold standard for the diagnosis of fibrosis, noninvasive biochemical methods are cost-effective, practical and are not linked with major risks of complications. In this respect, serum hepcidin, has emerged as a new marker of fibrosis and cirrhosis. In this review the discussion uncovers molecular links between hepcidin disturbance and liver fibrosis/cirrhosis. The discussion also expands on clinical studies that suggest that hepcidin can potentially be used as a biochemical parameter of fibrosis/cirrhosis and target of therapeutic strategies to treat liver diseases. The debatable issues such as the complicated nature of hepcidin disturbance in non-alcoholic liver disease, serum levels of hepcidin in acute hepatitis C virus infection, cause of hepcidin disturbance in autoimmune hepatitis and hepatic insulin resistance are discussed, with potential solutions unveiled in order to be studied by future research.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n, Prishtina, 10000, Kosovo.
| |
Collapse
|