1
|
Wang J, Xia A, Tang M, Yang S, Shen Y, Dao J, Tao R, Yue W. Integrative analysis of serum proteomics and transcriptomics in hepatitis C. Virol J 2025; 22:73. [PMID: 40082995 PMCID: PMC11905632 DOI: 10.1186/s12985-025-02690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECT Hepatitis C is a contagious disease caused by infection with the hepatitis C virus (HCV) through blood and mother-to-child routes. This study intends to characterize the serum molecular features of hepatitis C using proteomics and transcriptomics. METHODS Ctrl (normal population), HCV (population with previous HCV infection), and chronic HCV (patients with persistent HCV infection) groups were set up, and the expression profiles of the proteomes and transcriptomes of serum samples were identified using TMT and RNA-seq. Bioinformatics was applied to perform enrichment analysis and PPI network construction of differentially expressed proteins/genes (DEPs/DEGs). RT-qPCR and western blot verified the expression differences of DEPs/DEGs. RESULTS Compared to the Ctrl group, the HCV group had 356 DEPs in serum; compared to the HCV group, the chronic HCV group had 381 DEPs in serum. DEPs are predominantly immunoglobulins and exosomal proteins that regulate carbon dioxide transport, initiation of transcription, immune responses, and bacterial and viral infections. HSPA4, HSPD1, COPS5, PSMD2 and TCP1 are key HCV-associated proteins in DEPs. The HCV group had 684 DEGs compared to the Ctrl group, and the chronic HCV group had 350 DEGs compared to the HCV group. DEGs primarily encode the extracellular matrix and regulate wound healing, cellular communication, oxidative stress, cell adhesion, viral infection, and immunity. KIF11, CENPE, TTK, CDC20 and ASPM are HCV-related hub genes in DEGs. Combined analyses revealed interactions between DEPs and DEGs, especially EIF4A3, MNAT1, and UBE2D1. Moreover, the expression patterns of EIF4A3, EIF2B1, MNAT1, SNRNP70, and UBE2D1 in DEPs/DEGs from Ctrl, HCV, and chronic HCV groups were consistent with the sequencing results. CONCLUSION EIF4A3, EIF2B1, MNAT1, SNRNP70, and UBE2D1 are involved in the process of HCV infection and pathogenesis, and they may be potential biomarkers for the treatment of patients with hepatitis C.
Collapse
Affiliation(s)
- Jianqiong Wang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China
| | - Andong Xia
- Department of Infectious Diseases and Liver Diseases, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China
| | - Min Tang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China
| | - Shengjun Yang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China
| | - Yandi Shen
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China
| | - Jinhua Dao
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China
| | - Rui Tao
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China.
| | - Wei Yue
- Department of Infectious Diseases and Liver Diseases, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Sinha A, Israeli R, Cirigliano A, Gihaz S, Trabelcy B, Braus GH, Gerchman Y, Fishman A, Negri R, Rinaldi T, Pick E. The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis. FASEB J 2020; 34:4870-4889. [PMID: 32077151 DOI: 10.1096/fj.201902487r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
The COP9 signalosome (CSN) is a conserved eukaryotic complex, essential for vitality in all multicellular organisms and critical for the turnover of key cellular proteins through catalytic and non-catalytic activities. Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of the CSN complex, since it includes a conserved enzymatic core but lacks non-catalytic activities, probably explaining its non-essentiality for life. A previous transcriptomic analysis of an S. cerevisiae strain deleted in the CSN5/RRI1 gene, encoding to the CSN catalytic subunit, revealed a downregulation of genes involved in lipid metabolism. We now show that the S. cerevisiae CSN holocomplex is essential for cellular lipid homeostasis. Defects in CSN assembly or activity lead to decreased quantities of ergosterol and unsaturated fatty acids (UFA); vacuole defects; diminished lipid droplets (LDs) size; and to accumulation of endoplasmic reticulum (ER) stress. The molecular mechanism behind these findings depends on CSN involvement in upregulating mRNA expression of SPT23. Spt23 is a novel activator of lipid desaturation and ergosterol biosynthesis. Our data reveal for the first time a functional link between the CSN holocomplex and Spt23. Moreover, CSN-dependent upregulation of SPT23 transcription is necessary for the fine-tuning of lipid homeostasis and for cellular health.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Ran Israeli
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Angela Cirigliano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Shalev Gihaz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Beny Trabelcy
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Yoram Gerchman
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rodolfo Negri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Elah Pick
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| |
Collapse
|
3
|
Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Redox Biol 2019; 20:533-543. [PMID: 30508698 PMCID: PMC6279957 DOI: 10.1016/j.redox.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.
Collapse
Affiliation(s)
- L Bramasole
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - A Sinha
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - S Gurevich
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - M Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Y Klein
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - N Panat
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - E Gefen
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - T Rinaldi
- Department of Biology and Biotechnology, University of Rome ''La Sapienza'', Rome 00185, Italy
| | - D Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - J Johnson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N Reis
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - D Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - M H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - E Pick
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel.
| |
Collapse
|