1
|
Rosa GB, Lukaski HC, Sardinha LB. The science of bioelectrical impedance-derived phase angle: insights from body composition in youth. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09964-7. [PMID: 40208410 DOI: 10.1007/s11154-025-09964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Despite bioelectrical impedance analysis (BIA)-derived phase angle (PhA) being recognized as a global marker of health, reflecting both cellular integrity and fluid distribution, its biological determinants still need to be described in youth. This narrative review provides a comprehensive framework examining to what extent dielectric properties shaping PhA are influenced by qualitative and quantitative determinants at multiple levels of body composition in healthy and clinical pediatric populations. At the atomic-molecular level, water content, glycogen, lipids, and ionic concentrations are expected to influence PhA by affecting electrical conductivity and/or capacitance. While the increase in the absolute values of intracellular (ICW) and extracellular water (ECW) enhances electric conductivity, an increase in the relative portion of ECW is expected to reflect hydration imbalances with an impact on electrical pathways. At the cellular level, body cell mass is a key determinant of PhA, mainly due to the presence of skeletal muscle cells favoring conductive and capacitive properties. At the tissue level, skeletal muscle architecture and orientation strongly influence conductivity, while increases in skeletal muscle mass positively impact PhA by enhancing electric conductivity and capacitance. Beyond the theoretical insights presented in this review, careful interpretation of dielectric data remains crucial due to the lack of methodological standardization. Future research should prioritize validated reference methods, investigate longitudinal changes, integrate localized BIA, and explore additional BIA models to refine the interpretation of PhA.
Collapse
Affiliation(s)
- Gil B Rosa
- Exercise and Health Laboratory, Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Cruz-Quebrada, Portugal.
| | - Henry C Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
| | - Luís B Sardinha
- Exercise and Health Laboratory, Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Cruz-Quebrada, Portugal
| |
Collapse
|
2
|
Pogarasteanu ME, Moga M, Barbilian A, Avram G, Dascalu M, Franti E, Gheorghiu N, Moldovan C, Rusu E, Adam R, Orban C. The Role of Fascial Tissue Layer in Electric Signal Transmission from the Forearm Musculature to the Cutaneous Layer as a Possibility for Increased Signal Strength in Myoelectric Forearm Exoprosthesis Development. Bioengineering (Basel) 2023; 10:bioengineering10030319. [PMID: 36978710 PMCID: PMC10044912 DOI: 10.3390/bioengineering10030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Myoelectric exoprostheses serve to aid in the everyday activities of patients with forearm or hand amputations. While electrical signals are known key factors controlling exoprosthesis, little is known about how we can improve their transmission strength from the forearm muscles as to obtain better sEMG. The purpose of this study is to evaluate the role of the forearm fascial layer in transmitting myoelectrical current. We examined the sEMG signals in three individual muscles, each from six healthy forearms (Group 1) and six amputation stumps (Group 2), along with their complete biometric characteristics. Following the tests, one patient underwent a circumferential osteoneuromuscular stump revision surgery (CONM) that also involved partial removal of fascia and subcutaneous fat in the amputation stump, with re-testing after complete healing. In group 1, we obtained a stronger sEMG signal than in Group 2. In the CONM case, after surgery, the patient’s data suggest that the removal of fascia, alongside the fibrotic and subcutaneous fat tissue, generates a stronger sEMG signal. Therefore, a reduction in the fascial layer, especially if accompanied by a reduction of the subcutaneous fat layer may prove significant for improving the strength of sEMG signals used in the control of modern exoprosthetics.
Collapse
Affiliation(s)
- Mark-Edward Pogarasteanu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Orthopaedics and Trauma Surgery, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Marius Moga
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Orthopaedics and Trauma Surgery, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Adrian Barbilian
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Orthopaedics and Trauma Surgery, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - George Avram
- Department of Orthopaedics and Trauma Surgery, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Monica Dascalu
- Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Center for New Electronic Architecture, Romanian Academy Center for Artificial Intelligence, 13 September Blulevard, 050711 Bucharest, Romania
| | - Eduard Franti
- Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Center for New Electronic Architecture, Romanian Academy Center for Artificial Intelligence, 13 September Blulevard, 050711 Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications Laboratory, National Institute for Research and Development in Microtechnology, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Nicolae Gheorghiu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Orthopedics and Traumatology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Cosmin Moldovan
- Department of Medical-Clinical Disciplines, Faculty of Medicine, “Titu Maiorescu” University of Bucharest, 031593 Bucharest, Romania
- Department of General Surgery, Witting Clinical Hospital, 010243 Bucharest, Romania
- Correspondence: (C.M.); (R.A.); Tel.: +40-7-2350-4207 (C.M.); +40-7-4003-8744 (R.A.)
| | - Elena Rusu
- Department of Preclinic Disciplines, Faculty of Medicine, “Titu Maiorescu” University of Bucharest, 031593 Bucharest, Romania
| | - Razvan Adam
- Department of Orthopedics and Traumatology, Elias Emergency University Hospital, 011461 Bucharest, Romania
- Department of First Aid and Disaster Medicine, Faculty of Medicine, “Titu Maiorescu” University of Bucharest, 040051 Bucharest, Romania
- Correspondence: (C.M.); (R.A.); Tel.: +40-7-2350-4207 (C.M.); +40-7-4003-8744 (R.A.)
| | - Carmen Orban
- Department of Anesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Rosati G, Cisotto G, Sili D, Compagnucci L, De Giorgi C, Pavone EF, Paccagnella A, Betti V. Inkjet-printed fully customizable and low-cost electrodes matrix for gesture recognition. Sci Rep 2021; 11:14938. [PMID: 34294822 PMCID: PMC8298403 DOI: 10.1038/s41598-021-94526-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
The use of surface electromyography (sEMG) is rapidly spreading, from robotic prostheses and muscle computer interfaces to rehabilitation devices controlled by residual muscular activities. In this context, sEMG-based gesture recognition plays an enabling role in controlling prosthetics and devices in real-life settings. Our work aimed at developing a low-cost, print-and-play platform to acquire and analyse sEMG signals that can be arranged in a fully customized way, depending on the application and the users' needs. We produced 8-channel sEMG matrices to measure the muscular activity of the forearm using innovative nanoparticle-based inks to print the sensors embedded into each matrix using a commercial inkjet printer. Then, we acquired the multi-channel sEMG data from 12 participants while repeatedly performing twelve standard finger movements (six extensions and six flexions). Our results showed that inkjet printing-based sEMG signals ensured significant similarity values across repetitions in every participant, a large enough difference between movements (dissimilarity index above 0.2), and an overall classification accuracy of 93-95% for flexion and extension, respectively.
Collapse
Affiliation(s)
- Giulio Rosati
- Department of Information Engineering, University of Padova, via G. Gradenigo 6b, 35131, Padova, Italy.
| | - Giulia Cisotto
- Department of Information Engineering, University of Padova, via G. Gradenigo 6b, 35131, Padova, Italy
- NCNP, National Centre of Neurology and Psychiatry, Tokyo, Japan
- CNIT, the National, Inter-University Consortium for Telecommunications, Rome, Italy
| | - Daniele Sili
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| | - Luca Compagnucci
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| | - Chiara De Giorgi
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| | | | - Alessandro Paccagnella
- Department of Information Engineering, University of Padova, via G. Gradenigo 6b, 35131, Padova, Italy
| | - Viviana Betti
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| |
Collapse
|
4
|
Gómez A, Gómez P, Palacios D, Rodellar V, Nieto V, Álvarez A, Tsanas A. A Neuromotor to Acoustical Jaw-Tongue Projection Model With Application in Parkinson's Disease Hypokinetic Dysarthria. Front Hum Neurosci 2021; 15:622825. [PMID: 33790751 PMCID: PMC8005556 DOI: 10.3389/fnhum.2021.622825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Aim The present work proposes the study of the neuromotor activity of the masseter-jaw-tongue articulation during diadochokinetic exercising to establish functional statistical relationships between surface Electromyography (sEMG), 3D Accelerometry (3DAcc), and acoustic features extracted from the speech signal, with the aim of characterizing Hypokinetic Dysarthria (HD). A database of multi-trait signals of recordings from an age-matched control and PD participants are used in the experimental study. Hypothesis: The main assumption is that information between sEMG and 3D acceleration, and acoustic features may be quantified using linear regression methods. Methods Recordings from a cohort of eight age-matched control participants (4 males, 4 females) and eight PD participants (4 males, 4 females) were collected during the utterance of a diadochokinetic exercise (the fast repetition of diphthong [aI]). The dynamic and acoustic absolute kinematic velocities produced during the exercises were estimated by acoustic filter inversion and numerical integration and differentiation of the speech signal. The amplitude distributions of the absolute kinematic and acoustic velocities (AKV and AFV) are estimated to allow comparisons in terms of Mutual Information. Results The regression results show the relationships between sEMG and dynamic and acoustic estimates. The projection methodology may help in understanding the basic neuromotor muscle activity regarding neurodegenerative speech in remote monitoring neuromotor and neurocognitive diseases using speech as the vehicular tool, and in the study of other speech-related disorders. The study also showed strong and significant cross-correlations between articulation kinematics, both for the control and the PD cohorts. The absolute kinematic variables presents an observable difference for the PD participants compared to the control group. Conclusion Kinematic distributions derived from acoustic analysis may be useful biomarkers toward characterizing HD in neuromotor disorders providing new insights into PD.
Collapse
Affiliation(s)
- Andrés Gómez
- Old Medical School, Medical School, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.,NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pedro Gómez
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Palacios
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Escuela Técnica Superior de Ingeniería Informática-Universidad Rey Juan Carlos, Móstoles, Spain
| | - Victoria Rodellar
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Víctor Nieto
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Agustín Álvarez
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Athanasios Tsanas
- Old Medical School, Medical School, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Effects of detection system parameters on cross-correlations between MUAPs generated from parallel and inclined muscle fibres. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to investigate the effects of inter-electrode distance (IED), electrode radius (ER) and electrodes configurations on cross-correlation coefficient (CC) between motor unit action potentials (MUAPs) generated in a motor unit (MU) of parallel fibres and in a MU of inclined fibres with respect to the detection system. The fibres inclination angle (FIA) varied from 0° to 180° by a step of 5°. Six spatial filters (the longitudinal single differential (LSD), longitudinal double differential (LDD), bi-transversal double differential (BiTDD), normal double differential (NDD), an inverse binomial filter of order two (IB2) and maximum kurtosis filter (MKF)), three values of IED and three values of ER were considered.
A cylindrical multilayer volume conductor constituted by bone, muscle, fat and skin layers was used to simulate the MUAPs.
The cross-correlation coefficient analysis showed that with the increase of the FIA, the pairs of MUAPs detected by the IB2 system were more correlated than those detected by the five other systems. For each FIA, the findings also showed that the MUAPs pairs detected by BiTDD, NDD, IB2 and MKF systems were more correlated with smaller IEDs than with larger ones, while inverse results were found with the LSD and LDD systems. In addition, the pairs of MUAPs detected by the LDD, BiTDD, IB2 and MKF systems were more correlated with large ERs than with smaller ones. However, inverse results were found with the LSD and NDD systems.
Collapse
|
6
|
Pereira Botelho D, Curran K, Lowery MM. Anatomically accurate model of EMG during index finger flexion and abduction derived from diffusion tensor imaging. PLoS Comput Biol 2019; 15:e1007267. [PMID: 31465437 PMCID: PMC6738720 DOI: 10.1371/journal.pcbi.1007267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/11/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023] Open
Abstract
This study presents a modelling framework in which information on muscle fiber direction and orientation during contraction is derived from diffusion tensor imaging (DTI) and incorporated in a computational model of the surface electromyographic (EMG) signal. The proposed model makes use of the principle of reciprocity to simultaneously calculate the electric potentials produced at the recording electrode by charges distributed along an arbitrary number of muscle fibers within the muscle, allowing for a computationally efficient evaluation of extracellular motor unit action potentials. The approach is applied to the complex architecture of the first dorsal interosseous (FDI) muscle of the hand to simulate EMG during index finger flexion and abduction. Using diffusion tensor imaging methods, the results show how muscle fiber orientation and curvature in this intrinsic hand muscle change during flexion and abduction. Incorporation of anatomically accurate muscle architecture and other hand tissue morphologies enables the model to capture variations in extracellular action potential waveform shape across the motor unit population and to predict experimentally observed differences in EMG signal features when switching from index finger abduction to flexion. The simulation results illustrate how structural and electrical properties of the tissues comprising the volume conductor, in combination with fiber direction and curvature, shape the detected action potentials. Using the model, the relative contribution of motor units of different sizes located throughout the muscle under both conditions is examined, yielding a prediction of the detection profile of the surface EMG electrode array over the muscle cross-section. Advances in diffusion tensor imaging are providing new information on muscle architecture and the orientation of muscle fibers in vivo. The arrangement of muscle fibers, in combination with geometrical and electrical properties of the surrounding biological tissues, shapes the electrical signal recorded at the skin surface during muscle contraction. As new recording and analysis methods enable muscle and motor unit activity to be examined during complex dynamic contractions, changes in muscle fiber orientation and surrounding tissue properties pose challenges for the interpretation of these data. Here we incorporate details of tissue geometry and muscle fiber architecture obtained using anatomical and diffusion MRI into an anatomically accurate model of electromyography (EMG) signal generation in the first dorsal interosseous muscle of the hand. The new modeling approach presented integrates interdependent electrical and geometrical properties in an anatomically accurate manner, leading to a realistic EMG model where tissue electrical properties are inherently related to bioelectric aspects of muscle activation. The results show how muscle fiber orientation and curvature change according to the direction of force generation, influencing the EMG signal, and provide new insights on how constitutive, anatomical and physiological properties contribute to shape motor unit action potentials detected at the skin surface.
Collapse
Affiliation(s)
- Diego Pereira Botelho
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Kathleen Curran
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Madeleine M Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Messaoudi N, Bekka RE, Belkacem S. Classification of the Systems Used in Surface Electromyographic Signal Detection according to the Degree of Isotropy. ADVANCED BIOMEDICAL ENGINEERING 2018. [DOI: 10.14326/abe.7.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Noureddine Messaoudi
- Department of Engineering of Electrical Systems, Faculty of Engineering Sciences, Université de Boumerdès
- Department of Electronics, LIS Laboratory, Faculty of Technology, Université de Sétif 1
| | - Raïs El’hadi Bekka
- Department of Electronics, LIS Laboratory, Faculty of Technology, Université de Sétif 1
| | - Samia Belkacem
- Department of Engineering of Electrical Systems, Faculty of Engineering Sciences, Université de Boumerdès
| |
Collapse
|
8
|
Tu LY, Pi J, Jin H, Cai JY, Deng SP. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex. Bioorg Med Chem Lett 2016; 26:2730-4. [PMID: 27080177 DOI: 10.1016/j.bmcl.2016.03.091] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/11/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent.
Collapse
Affiliation(s)
- Lv-Ying Tu
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China
| | - Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 000853, PR China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 000853, PR China
| | - Ji-Ye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 000853, PR China
| | - Sui-Ping Deng
- Department of Chemistry, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|