1
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2025; 45:128-147. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Sousa C, Ferreira R, Santos SB, Azevedo NF, Melo LDR. Advances on diagnosis of Helicobacter pylori infections. Crit Rev Microbiol 2023; 49:671-692. [PMID: 36264672 DOI: 10.1080/1040841x.2022.2125287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
The association of Helicobacter pylori to several gastric diseases, such as chronic gastritis, peptic ulcer disease, and gastric cancer, and its high prevalence worldwide, raised the necessity to use methods for a proper and fast diagnosis and monitoring the pathogen eradication. Available diagnostic methods can be classified as invasive or non-invasive, and the selection of the best relies on the clinical condition of the patient, as well as on the sensitivity, specificity, and accessibility of the diagnostic test. This review summarises all diagnostic methods currently available, including the invasive methods: endoscopy, histology, culture, and molecular methods, and the rapid urease test (RUT), as well as the non-invasive methods urea breath test (UBT), serological assays, biosensors, and microfluidic devices and the stool antigen test (SAT). Moreover, it lists the diagnostic advantages and limitations, as well as the main advances for each methodology. In the end, research on the development of new diagnostic methods, such as bacteriophage-based H. pylori diagnostic tools, is also discussed.
Collapse
Affiliation(s)
- Cláudia Sousa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Sílvio B Santos
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol 2023; 13:1195803. [PMID: 37284501 PMCID: PMC10239779 DOI: 10.3389/fcimb.2023.1195803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Biofilms are complex structures with an intricate relationship between the resident microorganisms, the extracellular matrix, and the surrounding environment. Interest in biofilms is growing exponentially given its ubiquity in so diverse fields such as healthcare, environmental and industry. Molecular techniques (e.g., next-generation sequencing, RNA-seq) have been used to study biofilm properties. However, these techniques disrupt the spatial structure of biofilms; therefore, they do not allow to observe the location/position of biofilm components (e.g., cells, genes, metabolites), which is particularly relevant to explore and study the interactions and functions of microorganisms. Fluorescence in situ hybridization (FISH) has been arguably the most widely used method for an in situ analysis of spatial distribution of biofilms. In this review, an overview on different FISH variants already applied on biofilm studies (e.g., CLASI-FISH, BONCAT-FISH, HiPR-FISH, seq-FISH) will be explored. In combination with confocal laser scanning microscopy, these variants emerged as a powerful approach to visualize, quantify and locate microorganisms, genes, and metabolites inside biofilms. Finally, we discuss new possible research directions for the development of robust and accurate FISH-based approaches that will allow to dig deeper into the biofilm structure and function.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Miranda
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Azevedo AS, Fernandes RM, Faria AR, Silvestre OF, Nieder JB, Lou C, Wengel J, Almeida C, Azevedo NF. Spectral imaging and nucleic acid mimics fluorescence in situ hybridization (SI-NAM-FISH) for multiplex detection of clinical pathogens. Front Microbiol 2022; 13:976639. [PMID: 36246234 PMCID: PMC9557775 DOI: 10.3389/fmicb.2022.976639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The application of nucleic acid mimics (NAMs), such as locked nucleic acid (LNA) and 2′-O-methyl-RNA (2’OMe), has improved the performance of fluorescence in situ hybridization (FISH) methods for the detection/location of clinical pathogens since they provide design versatility and thermodynamic control. However, an important limitation of FISH techniques is the low number of distinguishable targets. The use of filters in fluorescence image acquisition limits the number of fluorochromes that can be simultaneously differentiated. Recent advances in fluorescence spectral image acquisition have allowed the unambiguous identification of several microorganisms in a single sample. In this work, we aimed to combine NAM-FISH and spectral image analysis to develop and validate a new FISH variant, the spectral imaging-NAM-FISH (SI-NAM-FISH), that allows a multiplexed, robust and rapid detection of clinical pathogens. In the first stage, to implement/validate the method, we have selected seven fluorochromes with distinct spectral properties and seven bacterial species (Pseudomonas aeruginosa, Citrobacter freundii, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter calcoaceticus). As a strong variation in fluorescence intensities is found between species and between fluorochromes, seven versions of a EUB LNA/2’OMe probe, each conjugated to one of seven fluorochromes, were used to rank species/fluorochromes by FISH and then optimize species/fluorochrome pairing. Then, final validation tests were performed using mixed populations to evaluate the potential of the technique for separating/quantifying the different targets. Overall, validation tests with different proportions of bacteria labeled with the respective fluorochrome have shown the ability of the method to correctly distinguish the species.
Collapse
Affiliation(s)
- Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
- *Correspondence: Andreia S. Azevedo,
| | - Ricardo M. Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vila Do Conde, Portugal
| | - Ana R. Faria
- INL International Iberian Nanotechnology Laboratory, Av Mestre José Veiga s/n, Braga, Portugal
| | - Oscar F. Silvestre
- INL International Iberian Nanotechnology Laboratory, Av Mestre José Veiga s/n, Braga, Portugal
| | - Jana B. Nieder
- INL International Iberian Nanotechnology Laboratory, Av Mestre José Veiga s/n, Braga, Portugal
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vila Do Conde, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Moreira L, Guimarães NM, Pereira S, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Liposome Delivery of Nucleic Acids in Bacteria: Toward In Vivo Labeling of Human Microbiota. ACS Infect Dis 2022; 8:1218-1230. [PMID: 35737929 PMCID: PMC9775462 DOI: 10.1021/acsinfecdis.1c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development of specific probes to study the in vivo spatial distribution of microorganisms is essential to understand the ecology of human microbiota. Herein, we assess the possibility of using liposomes loaded with fluorescently labeled nucleic acid mimics (LipoNAMs) to image Gram-negative and Gram-positive bacteria. We proved that liposome fusion efficiencies were similar in both Gram-negative and Gram-positive bacteria but that the efficiency was highly dependent on the lipid concentration. Notably, LipoNAMs were significantly more effective for the internalization of oligonucleotides in bacteria than the fixation/permeabilization methods commonly used in vitro. Furthermore, a structural and morphological assessment of the changes on bacteria allowed us to observe that liposomes increased the permeability of the cell envelope especially in Gram-negative bacteria. Considering the delivery efficiency and permeabilization effect, lipid concentrations of approximately 5 mM should be selected to maximize the detection of bacteria without compromising the bacterial cellular structure.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. Guimarães
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,. Fax: +351 22 508 14 40
| | - Sara Pereira
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S. Santos
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
7
|
Oliveira R, Azevedo AS, Mendes L. Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. Methods Mol Biol 2021; 2246:69-86. [PMID: 33576983 DOI: 10.1007/978-1-0716-1115-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities' structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2'-O-methyl RNA (2'OMe), and phosphorothioates (PS). In this chapter, we describe a protocol using PNA and LNA/2'OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luzia Mendes
- FMDUP - Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Abstract
Fluorescence in situ hybridization (FISH) is a molecular biology technique that enables the localization, quantification, and identification of microorganisms in a sample. This technique has found applications in several areas, most notably the environmental, for quantification and diversity assessment of microorganisms and, the clinical, for the rapid diagnostics of infectious agents. The FISH method is based on the hybridization of a fluorescently labeled nucleic acid probe with a complementary sequence that is present inside the microbial cell, typically in the form of ribosomal RNA (rRNA). In fact, an hybridized cell is typically only detectable because a large number of multiple fluorescent particles (as many as the number of target sequences available) are present inside the cell. Here, we will review the major steps involved in a standard FISH protocol, namely, fixation/permeabilization, hybridization, washing, and visualization/detection. For each step, the major variables/parameters are identified and, subsequently, their impact on the overall hybridization performance is assessed in detail.
Collapse
Affiliation(s)
- Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal.
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Dey TK, Karmakar BC, Sarkar A, Paul S, Mukhopadhyay AK. A Mouse Model of Helicobacter pylori Infection. Methods Mol Biol 2021; 2283:131-151. [PMID: 33765316 DOI: 10.1007/978-1-0716-1302-3_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is of great distress because of its vital role in the pathogenesis of chronic gastritis, peptic ulcers, and in the multi-step carcinogenic process of gastric cancer. The increasing antibiotic resistance pattern of H. pylori worldwide has prompted the World Health Organization to put this organism in the priority pathogens list. To study the disease biology, evaluation of drugs, treatment outcome and to come up with probable vaccination strategies, competent animal models that reproduce the signature of human infection are essential. Initial reports about animal colonization with H. pylori have shown significant heterogeneity, to such an extent that Barry Marshall, Nobel laureate for the discovery of H. pylori , infected himself with the bacterium to show its involvement in acute gastric illness. A paradigm-shift discovery of the H. pylori mouse-adapted strain SS1 has opened the avenues of research regarding the organism and its pathogenicity. Although the mouse model of H. pylori infection is being utilized all over the world, there are certain issues that need awareness and specific information to achieve successful, consistent colonization with symptoms resembling human. This chapter details an established and reliable protocol for the development of a competent mouse model for H. pylori infection leading to various gastro-intestinal diseases.
Collapse
Affiliation(s)
- Tanmoy Kumar Dey
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Avijit Sarkar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sangita Paul
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
10
|
Optimizing locked nucleic acid/2'-O-methyl-RNA fluorescence in situ hybridization (LNA/2'OMe-FISH) procedure for bacterial detection. PLoS One 2019; 14:e0217689. [PMID: 31150460 PMCID: PMC6544301 DOI: 10.1371/journal.pone.0217689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Despite the successful application of LNA/2'OMe-FISH procedures for bacteria detection, there is a lack of knowledge on the properties that affect hybridization. Such information is crucial for the rational design of protocols. Hence, this work aimed to evaluate the effect of three essential factors on the LNA/2'OMe hybridization step-hybridization temperature, NaCl concentration and type and concentration of denaturant (formamide, ethylene carbonate and urea). This optimization was performed for 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Citrobacter freundii) and 2 Gram-positive bacteria (Enterococcus faecalis and Staphylococcus epidermidis), employing the response surface methodology and a Eubacteria probe. In general, it was observed that a high NaCl concentration is beneficial (from 2 M to 5 M), regardless of the denaturant used. Urea, formamide and ethylene carbonate are suitable denaturants for LNA/2'OMe-FISH applications; but urea provides higher fluorescence intensities among the different bacteria, especially for gram-positive bacteria and for P. aeruginosa. However, a unique optimal protocol was not found for all tested bacteria. Despite this, the results indicate that a hybridization solution with 2 M of urea and 4 M of NaCl would be a proper starting point. Furthermore, a hybridization temperature around 62°C, for 14 bp probes with LNA monomers at every third position of 2'OMe and 64% of GC content, should be use in initial optimization of new LNA/2'OMe-FISH protocols.
Collapse
|
11
|
Costa AM, Mergulhão FJ, Briandet R, Azevedo NF. It is all about location: how to pinpoint microorganisms and their functions in multispecies biofilms. Future Microbiol 2017; 12:987-999. [PMID: 28745517 DOI: 10.2217/fmb-2017-0053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multispecies biofilms represent the dominant mode of life for the vast majority of microorganisms. Bacterial spatial localization in such biostructures governs ecological interactions between different populations and triggers the overall community functions. Here, we discuss the pros and cons of fluorescence-based techniques used to decipher bacterial species patterns in biofilms at single cell level, including fluorescence in situ hybridization and the use of genetically modified bacteria that express fluorescent proteins, reporting the significant improvements of those techniques. The development of tools for spatial and temporal study of multispecies biofilms will allow live imaging and spatial localization of cells in naturally occurring biofilms coupled with metabolic information, increasing insight of microbial community and the relation between its structure and functions.
Collapse
Affiliation(s)
- Angela M Costa
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.,INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Filipe J Mergulhão
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Detection of Helicobacter pylori in the Gastric Mucosa by Fluorescence In Vivo Hybridization. Methods Mol Biol 2017; 1616:137-146. [PMID: 28600766 DOI: 10.1007/978-1-4939-7037-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this chapter, we describe a fluorescence in vivo hybridization (FIVH) protocol, using nucleic acid probes, for the detection of the bacterium Helicobacter pylori in the gastric mucosa of an infected C57BL/6 mouse model. This protocol should be easily extended to other microorganisms not only as a way to identify in vivo important microorganisms and their patterns of distribution within specific or at different anatomic sites, but also to better understand interaction mechanisms involving the microbiome and the human body.
Collapse
|
13
|
Abstract
There is progress in endoscopy techniques. While it is not yet possible to detect Helicobacter pylori directly in the stomach, it becomes easier to detect the mucosal changes induced by the bacteria. Some small changes can also increase the sensitivity of the invasive tests, for example culture or histology, but the wide use of proton-pump inhibitors has a negative impact on these tests. Only molecular methods are able to detect a limited load of bacteria, especially by using real-time PCR but also with new methods, for example dual-priming oligonucleotide-based PCR, loop-medicated isothermal amplification, droplet-digital PCR or a multiple genetic analysis system. Among the noninvasive tests, urea breath test remains a test of major interest, while there are attempts to develop an ammonia breath test and other nanosensor devices. A new antigen stool test, a chemoluminescence immunoassay using the LIAISON apparatus has also been tested for the first time with success. Despite its limitations, serology remains the most popular test to detect H. pylori antibodies. It also allows pepsinogen dosage which is of interest for detecting atrophy.
Collapse
Affiliation(s)
- Francis Mégraud
- INSERM U1053, University of Bordeaux, 146 rue Léo Saignat, Bordeaux Cedex, France
| | - Pauline Floch
- INSERM U1053, University of Bordeaux, 146 rue Léo Saignat, Bordeaux Cedex, France
| | - Joachim Labenz
- Diakonie Klinikum, Jung-Stilling Hospital, Siegen, Germany
| | - Philippe Lehours
- INSERM U1053, University of Bordeaux, 146 rue Léo Saignat, Bordeaux Cedex, France
| |
Collapse
|