1
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
2
|
Santa C, Rodrigues D, Coelho JF, Anjo SI, Mendes VM, Bessa-Neto D, Dunn MJ, Cotter D, Baltazar G, Monteiro P, Manadas B. Chronic treatment with D2-antagonist haloperidol leads to inhibitory/excitatory imbalance in striatal D1-neurons. Transl Psychiatry 2023; 13:312. [PMID: 37803004 PMCID: PMC10558446 DOI: 10.1038/s41398-023-02609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Striatal dysfunction has been implicated in the pathophysiology of schizophrenia, a disorder characterized by positive symptoms such as hallucinations and delusions. Haloperidol is a typical antipsychotic medication used in the treatment of schizophrenia that is known to antagonize dopamine D2 receptors, which are abundantly expressed in the striatum. However, haloperidol's delayed therapeutic effect also suggests a mechanism of action that may go beyond the acute blocking of D2 receptors. Here, we performed proteomic analysis of striatum brain tissue and found more than 400 proteins significantly altered after 30 days of chronic haloperidol treatment in mice, namely proteins involved in glutamatergic and GABAergic synaptic transmission. Cell-type specific electrophysiological recordings further revealed that haloperidol not only reduces the excitability of striatal medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) but also affects D1-MSNs by increasing the ratio of inhibitory/excitatory synaptic transmission (I/E ratio) specifically onto D1-MSNs but not D2-MSNs. Therefore, we propose the slow remodeling of D1-MSNs as a mechanism mediating the delayed therapeutic effect of haloperidol over striatum circuits. Understanding how haloperidol exactly contributes to treating schizophrenia symptoms may help to improve therapeutic outcomes and elucidate the molecular underpinnings of this disorder.
Collapse
Affiliation(s)
- Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- III - Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Joana F Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Diogo Bessa-Neto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Michael J Dunn
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Dublin, Ireland
| | - David Cotter
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont, Dublin, Ireland
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal.
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
3
|
Karnecki K, Świerczyński J, Steiner J, Krzyżanowska M, Kaliszan M, Gos T. The left-lateralisation of citrate synthase activity in the anterior cingulate cortex of male violent suicide victims. Eur Arch Psychiatry Clin Neurosci 2023; 273:1225-1232. [PMID: 36350374 PMCID: PMC10449962 DOI: 10.1007/s00406-022-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The anterior cingulate cortex (AC) as a part of prefrontal cortex plays a crucial role in behavioural regulation, which is profoundly disturbed in suicide. Citrate synthase (CS) is a key enzyme of tricarboxylic acid cycle fundamental for brain energetics and neurotransmitter synthesis, which are deteriorated in suicidal behaviour. However, CS activity has not been yet studied in brain structures of suicide victims. CS activity assay was performed bilaterally on frozen samples of the rostral part of the AC of 24 violent suicide completers (21 males and 3 females) with unknown psychiatric diagnosis and 24 non-suicidal controls (20 males and 4 females). Compared to controls, suicide victims revealed decreased CS activity in the right AC, however, insignificant. Further statistical analysis of laterality index revealed the left-lateralisation of CS activity in the AC in male suicides compared to male controls (U-test P = 0.0003, corrected for multiple comparisons). The results were not confounded by postmortem interval, blood alcohol concentration, age, and brain weight. Our findings suggest that disturbed CS activity in the AC plays a role in suicide pathogenesis and correspond with our previous morphological and molecular studies of prefrontal regions in suicide.
Collapse
Affiliation(s)
- Karol Karnecki
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | | | - Johann Steiner
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland.
| |
Collapse
|
4
|
Dowling KF, Dienel SJ, Barile Z, Bazmi HH, Lewis DA. Localization and Diagnostic Specificity of Glutamic Acid Decarboxylase Transcript Alterations in the Dorsolateral Prefrontal Cortex in Schizophrenia. Biol Psychiatry 2023; 94:322-331. [PMID: 37061080 PMCID: PMC10524522 DOI: 10.1016/j.biopsych.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Working memory (WM) deficits in schizophrenia are thought to reflect altered inhibition in the dorsolateral prefrontal cortex (DLPFC). This interpretation is supported by findings of lower transcript levels of the 2 enzymes, GAD67 and GAD65, which mediate basal and activity-dependent GABA (gamma-aminobutyric acid) synthesis, respectively. However, the relative magnitude, location within the depth of the DLPFC, and specificity to the disease process of schizophrenia of alterations in GAD67 and/or GAD65 remain unclear. METHODS Levels of GAD67 and GAD65 messenger RNAs (mRNAs) in superficial (layers 2/superficial 3) and deep (deep layer 6/white matter) zones of the DLPFC were quantified by quantitative polymerase chain reaction in subjects with schizophrenia (n = 41), major depression (n = 42), or bipolar disorder (n = 39) and unaffected comparison (n = 43) subjects. RESULTS Relative to the unaffected comparison group, GAD67 and GAD65 mRNA levels in the schizophrenia group were lower (p = .039, effect size = -0.69 and p = .027, effect size = -0.72, respectively) in the superficial zone but were unaltered in the deep zone. In the major depression group, only GAD67 mRNA levels were lower and only in the superficial zone (p = .089, effect size = 0.70). No differences were detected in the bipolar disorder group. Neither GAD67 nor GAD65 mRNA alterations were explained by psychosis, mood disturbance, or common comorbid factors. CONCLUSIONS Alterations in markers of GABA synthesis demonstrated transcript, DLPFC zone, and diagnostic specificity. Given the dependence of WM on GABA neurotransmission in the superficial DLPFC, our findings suggest that limitations to GABA synthesis in this location contribute to WM impairments in schizophrenia, especially during demanding WM tasks, when GABA synthesis requires the activity of both GAD67 and GAD65.
Collapse
Affiliation(s)
- Kevin F Dowling
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Zackery Barile
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Little K, Singh A, Del Marco A, Llorián-Salvador M, Vargas-Soria M, Turch-Anguera M, Solé M, Bakker N, Scullion S, Comella JX, Klaassen I, Simó R, Garcia-Alloza M, Tiwari VK, Stitt AW. Disruption of cortical cell type composition and function underlies diabetes-associated cognitive decline. Diabetologia 2023; 66:1557-1575. [PMID: 37351595 PMCID: PMC10317904 DOI: 10.1007/s00125-023-05935-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 06/24/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is associated with increased risk of cognitive decline although the pathogenic basis for this remains obscure. Deciphering diabetes-linked molecular mechanisms in cells of the cerebral cortex could uncover novel therapeutic targets. METHODS Single-cell transcriptomic sequencing (scRNA-seq) was conducted on the cerebral cortex in a mouse model of type 2 diabetes (db/db mice) and in non-diabetic control mice in order to identify gene expression changes in distinct cell subpopulations and alterations in cell type composition. Immunohistochemistry and metabolic assessment were used to validate the findings from scRNA-seq and to investigate whether these cell-specific dysfunctions impact the neurovascular unit (NVU). Furthermore, the behavioural and cognitive alterations related to these dysfunctions in db/db mice were assessed via Morris water maze and novel object discrimination tests. Finally, results were validated in post-mortem sections and protein isolates from individuals with type 2 diabetes. RESULTS Compared with non-diabetic control mice, the db/db mice demonstrated disrupted brain function as revealed by losses in episodic and spatial memory and this occurred concomitantly with dysfunctional NVU, neuronal circuitry and cerebral atrophy. scRNA-seq of db/db mouse cerebral cortex revealed cell population changes in neurons, glia and microglia linked to functional regulatory disruption including neuronal maturation and altered metabolism. These changes were validated through immunohistochemistry and protein expression analysis not just in the db/db mouse cerebral cortex but also in post-mortem sections and protein isolates from individuals with type 2 diabetes (74.3 ± 5.5 years) compared with non-diabetic control individuals (87.0 ± 8.5 years). Furthermore, metabolic and synaptic gene disruptions were evident in cortical NVU cell populations and associated with a decrease in vascular density. CONCLUSIONS/INTERPRETATION Taken together, our data reveal disruption in the cellular and molecular architecture of the cerebral cortex induced by diabetes, which can explain, at least in part, the basis for progressive cognitive decline in individuals with type 2 diabetes. DATA AVAILABILITY The single-cell sequencing data that supports this study are available at GEO accession GSE217665 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217665 ).
Collapse
Affiliation(s)
- Karis Little
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Aditi Singh
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Angel Del Marco
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - María Llorián-Salvador
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mireia Turch-Anguera
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED - ISCII), Madrid, Spain
| | - Montse Solé
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED - ISCII), Madrid, Spain
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah Scullion
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Joan X Comella
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED - ISCII), Madrid, Spain
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Rafael Simó
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM-ISCIII), Madrid, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Vijay K Tiwari
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| | - Alan W Stitt
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
6
|
Mediating effect of genome-wide DNA methylation on suicidal ideation induced by stressful events. Psychiatr Genet 2023; 33:26-33. [PMID: 36617744 DOI: 10.1097/ypg.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Schizophrenia is a debilitating disease that is associated with higher rates of death by unnatural causes including suicide. Exposure to stressful events is an important risk factor for suicidal ideation (SI); however, the mechanisms that link stress, SI, and suicide remain unclear. Epigenetic processes are involved in both vulnerability to suicidal behavior and stress. Therefore, we sought to study the relationship between epigenetic modifications and suicidal behavior and stress. METHODS This pilot study was conducted on 39 patients diagnosed with schizophrenia (54% men and age 45.5 ± 12.7). We analyzed the effects of (a) stress exposure and (b) the mediation of DNA methylation [via an epigenetic wide association study (EWAS) of more than 450 000 CpG sites across the genome] on SI severity. RESULTS The top CpG site mediating the effect of global stress exposure on SI was cg27660192 located in an intergenic region on chromosome 11, exerting a facilitating effect on worsening SI through DNA hypomethylation. CONCLUSION These preliminary results indicate that DNA methylation in peripheral tissues can shed light on the complex relationship between stress and SI in schizophrenia.
Collapse
|
7
|
Ma R, Johnson JHR, Tang Y, Fitzgerald MC. Analysis of Brain Protein Stability Changes in Mouse Models of Normal Aging and α-Synucleinopathy Reveals Age- and Disease-Related Differences. J Proteome Res 2021; 20:5156-5168. [PMID: 34606284 DOI: 10.1021/acs.jproteome.1c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we utilize the stability of proteins from rates of oxidation (SPROX) technique, to profile the thermodynamic stabilities of proteins in brain tissue cell lysates from Huα-Syn(A53T) transgenic mice at three time points including at 1 month (n = 9), at 6 months (n = 7), and at the time (between 9 and 16 months) a mouse became symptomatic (n = 8). The thermodynamic stability profiles generated here on 332 proteins were compared to thermodynamic stability profiles generated on the same proteins from similarly aged wild-type mice using a two-way unbalanced analysis of variance (ANOVA) analysis. This analysis identified a group of 22 proteins with age-related protein stability changes and a group of 11 proteins that were differentially stabilized in the Huα-Syn(A53T) transgenic mouse model. A total of 9 of the 11 proteins identified here with disease-related stability changes have been previously detected in human cerebral spinal fluid and thus have potential utility as biomarkers of Parkinson's disease (PD). The differential stability observed for one protein, glutamate decarboxylase 2 (Gad2), with an age-related change in stability, was consistent with the differential presence of a known, age-related truncation product of this protein, which is shown here to have a higher folding stability than full-length Gad2. Mass spectrometry data were deposited at ProteomeXchange (PXD016985).
Collapse
Affiliation(s)
- Renze Ma
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Julia H R Johnson
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Yun Tang
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
8
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Maas DA, Martens MB, Priovoulos N, Zuure WA, Homberg JR, Nait-Oumesmar B, Martens GJM. Key role for lipids in cognitive symptoms of schizophrenia. Transl Psychiatry 2020; 10:399. [PMID: 33184259 PMCID: PMC7665187 DOI: 10.1038/s41398-020-01084-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder with a convoluted etiology that includes cognitive symptoms, which arise from among others a dysfunctional dorsolateral prefrontal cortex (dlPFC). In our search for the molecular underpinnings of the cognitive deficits in SZ, we here performed RNA sequencing of gray matter from the dlPFC of SZ patients and controls. We found that the differentially expressed RNAs were enriched for mRNAs involved in the Liver X Receptor/Retinoid X Receptor (LXR/RXR) lipid metabolism pathway. Components of the LXR/RXR pathway were upregulated in gray matter but not in white matter of SZ dlPFC. Intriguingly, an analysis for shared genetic etiology, using two SZ genome-wide association studies (GWASs) and GWAS data for 514 metabolites, revealed genetic overlap between SZ and acylcarnitines, VLDL lipids, and fatty acid metabolites, which are all linked to the LXR/RXR signaling pathway. Furthermore, analysis of structural T1-weighted magnetic resonance imaging in combination with cognitive behavioral data showed that the lipid content of dlPFC gray matter is lower in SZ patients than in controls and correlates with a tendency towards reduced accuracy in the dlPFC-dependent task-switching test. We conclude that aberrations in LXR/RXR-regulated lipid metabolism lead to a decreased lipid content in SZ dlPFC that correlates with reduced cognitive performance.
Collapse
Affiliation(s)
- Dorien A. Maas
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands ,Sorbonne Université, Paris Brain Institute – ICM, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France ,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Marijn B. Martens
- NeuroDrug Research Ltd, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Nikos Priovoulos
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam-Zuidoost, 1105 BK Amsterdam, The Netherlands
| | - Wieteke A. Zuure
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Brahim Nait-Oumesmar
- Sorbonne Université, Paris Brain Institute – ICM, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gerard J. M. Martens
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands ,NeuroDrug Research Ltd, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
10
|
Liang Y, Meyer A, Kratochwil CF. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Sci Rep 2020; 10:12329. [PMID: 32704058 PMCID: PMC7378239 DOI: 10.1038/s41598-020-69239-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
11
|
Abstract
Abstract
Introduction: GAD2 gene encodes the glutamate decarboxylase enzyme which catalyses the transformation of glutamate into γ-aminobutyric acid, GABA. It is suggested that some polymorphic alleles of GAD2 gene, such as -243A>G, have an increased transcriptional effect compared with the wild type, which results in an increase of GABA in the hypothalamus with the subsequent increase of the neuropeptide Y, thus exacerbating the hunger centre and the appetite. The aim of this study was to observe an association between the -243A>G polymorphism with obesity, comparatively studying a group of obese patients and a group of patients with normal weight.
Patients and method: 127 patients were clinically evaluated in the Genetic and Endocrine Department of Children’s Emergency Clinical Hospital, Cluj. The patients were included in two study groups, case group, with obesity (BMI higher than 97 kg/m2) and control group, with normal weight (BMI less than 97 kg/m2). Genotyping for GAD2-243A>G polymorphism was performed using PCR-RFLP technique, the two groups being compared regarding the genotypes and phenotypes.
Results and conclusions: In the obesity group, there is a statistically significant difference in BMI (kg/m2) between the subgroups with different genotypes (p=0.01), the AA genotype being less severely affected than AG and GG genotypes. In the normal weight group there is no association between BMI and different genotypes (AA, AG or GG). Also, there is a greater distribution of GG genotypes and G allele in the obesity group compared with the control group, with an odds ratio which suggest that -243A>G polymorphism is a risk factor in obesity development (GG genotype OR=3.76, G allele OR=1.73, p=0.04).
The finding of our study is important in explaining the multifactorial model of obesity, our research demonstrating that the GAD2-243 A> G variant could be a risk factor that added to other obesogenic factors would potentiate their effect.
Collapse
|
12
|
Artificial Intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res 2019; 1726:146510. [PMID: 31628932 DOI: 10.1016/j.brainres.2019.146510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Concussion, also referred to as mild traumatic brain injury (mTBI) is the most common type of traumatic brain injury. Currently concussion is an area ofintensescientific interest to better understand the biological mechanisms and for biomarker development. We evaluated whole genome-wide blood DNA cytosine ('CpG') methylation in 17 pediatric concussion isolated cases and 18 unaffected controls using Illumina Infinium MethylationEPIC assay. Pathway analysis was performed using Ingenuity Pathway Analysis to help elucidate the epigenetic and molecular mechanisms of the disorder. Area under the receiver operating characteristics (AUC) curves and FDR p-values were calculated for mTBI detection based on CpG methylation levels. Multiple Artificial Intelligence (AI) platforms including Deep Learning (DL), the newest form of AI, were used to predict concussion based on i) CpG methylation markers alone, and ii) combined epigenetic, clinical and demographic predictors. We found 449 CpG sites (473 genes), those were statistically significantly methylated in mTBI compared to controls. There were four CpGs with excellent individual accuracy (AUC ≥ 0.90-1.00) while 119 displayed good accuracy (AUC ≥ 0.80-0.89) for the prediction of mTBI. The CpG methylation changes ≥10% were observed in many CpG loci after concussion suggesting biological significance. Pathway analysis identified several biologically important neurological pathways that were perturbed including those associated with: impaired brain function, cognition, memory, neurotransmission, intellectual disability and behavioral change and associated disorders. The combination of epigenomic and clinical predictors were highly accurate for the detection of concusion using AI techniques. Using DL/AI, a combination of epigenomic and clinical markers had sensitivity and specificity ≧95% for prediction of mTBI. In this novel study, we identified significant methylation changes in multiple genes in response to mTBI. Gene pathways that were epigenetically dysregulated included several known to be involved in neurological function, thus giving biological plausibility to our findings.
Collapse
|
13
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
14
|
De Berardis D, Fornaro M, Valchera A, Cavuto M, Perna G, Di Nicola M, Serafini G, Carano A, Pompili M, Vellante F, Orsolini L, Fiengo A, Ventriglio A, Yong-Ku K, Martinotti G, Di Giannantonio M, Tomasetti C. Eradicating Suicide at Its Roots: Preclinical Bases and Clinical Evidence of the Efficacy of Ketamine in the Treatment of Suicidal Behaviors. Int J Mol Sci 2018; 19:E2888. [PMID: 30249029 PMCID: PMC6213585 DOI: 10.3390/ijms19102888] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the continuous advancement in neurosciences as well as in the knowledge of human behaviors pathophysiology, currently suicide represents a puzzling challenge. The World Health Organization (WHO) has established that one million people die by suicide every year, with the impressive daily rate of a suicide every 40 s. The weightiest concern about suicidal behavior is how difficult it is for healthcare professionals to predict. However, recent evidence in genomic studies has pointed out the essential role that genetics could play in influencing person's suicide risk. Combining genomic and clinical risk assessment approaches, some studies have identified a number of biomarkers for suicidal ideation, which are involved in neural connectivity, neural activity, mood, as well as in immune and inflammatory response, such as the mammalian target of rapamycin (mTOR) signaling. This interesting discovery provides the neurobiological bases for the use of drugs that impact these specific signaling pathways in the treatment of suicidality, such as ketamine. Ketamine, an N-methyl-d-aspartate glutamate (NMDA) antagonist agent, has recently hit the headlines because of its rapid antidepressant and concurrent anti-suicidal action. Here we review the preclinical and clinical evidence that lay the foundations of the efficacy of ketamine in the treatment of suicidal ideation in mood disorders, thereby also approaching the essential question of the understanding of neurobiological processes of suicide and the potential therapeutics.
Collapse
Affiliation(s)
- Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, "G. Mazzini" Hospital, p.zza Italia 1, 64100 Teramo, Italy.
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, 63100 Ascoli Piceno, Italy.
| | - Marilde Cavuto
- Department of Theory, Analysis and Composition, Music Conservatory "L. Canepa", 07100 Sassari, Italy.
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, 22032 Como, Italy.
- Department of Psychiatry and Neuropsychology, University of Maastricht, 6221 Maastricht, The Netherlands.
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Coral Gables, FL 33114, USA.
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Catholic University of Sacred Heart, 00118 Rome, Italy.
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy.
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "Madonna Del Soccorso", A.S.U.R. 12, 63074 San Benedetto del Tronto, Italy.
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, 00118 Rome, Italy.
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield SG141LZ, UK.
| | - Annastasia Fiengo
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASUR Marche AV5, Mental Health Unit, 63100 Ascoli Piceno, Italy.
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy.
| | - Kim Yong-Ku
- Department of Psychiatry, Korea University College of Medicine, Seoul 08826, Korea.
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Carmine Tomasetti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| |
Collapse
|
15
|
Weng X, Liu F, Zhang H, Kan M, Wang T, Dong M, Liu Y. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Res Clin Pract 2018; 142:10-18. [PMID: 29596946 DOI: 10.1016/j.diabres.2018.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Offspring exposed to gestational diabetes mellitus (GDM) are at a high risk for metabolic diseases. The mechanisms behind the association between offspring exposed to GDM in utero and an increased risk of health consequences later in life remain unclear. The aim of this study was to clarify the changes in methylation levels in the foetuses of women with GDM and to explore the possible mechanisms linking maternal GDM with a high risk of metabolic diseases in offspring later in life. METHODS A genome-wide comparative methylome analysis on the umbilical cord blood of infants born to 30 women with GDM and 33 women with normal pregnancy was performed using Infinium HumanMethylation 450 BeadChip assays. A quantitative methylation analysis of 18 CpG dinucleotides was verified in the validation umbilical cord blood samples from 102 newborns exposed to GDM and 103 newborns who experienced normal pregnancy by MassARRAY EpiTYPER. RESULTS A total of 4485 differentially methylated sites (DMSs), including 2150 hypermethylated sites and 2335 hypomethylated sites, with a mean β-value difference of >0.05, were identified by the 450k array. Good agreement was observed between the massarray validation data and the 450k array data (R2 > 0.99; P < 0.0001). Thirty-seven CpGs (representing 20 genes) with a β-value difference of > 0.15 between the GDM and healthy groups were identified and showed potential as clinical biomarkers for GDM. "hsa04940: Type I diabetes mellitus" was the most significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, with a P-value = 3.20E-07 and 1.36E-02 in the hypermethylated and hypomethylated genepathway enrichment analyses, respectively. In the Gene Ontology (GO) pathway analyses, immune MHC (major histocompatibility complex)-related pathways and neuron development-related pathways were significantly enriched. CONCLUSIONS Our results suggest that GDM has epigenetic effects on genes that are preferentially involved in the Type I diabetes mellitus pathway, immune MHC-related pathways and neuron development-related pathways, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming.
Collapse
Affiliation(s)
- Xiaoling Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Fatao Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Mengyuan Kan
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ting Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, PR China
| | - Yun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China; Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China.
| |
Collapse
|
16
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
17
|
Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, Gondré-Lewis MC, Weinberger DR, Kleinman JE, Hyde TM. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry 2018; 23:1496-1505. [PMID: 28485403 PMCID: PMC7564279 DOI: 10.1038/mp.2017.105] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/20/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
Genetic variations and adverse environmental events in utero or shortly after birth can lead to abnormal brain development and increased risk of schizophrenia. γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, plays a vital role in normal brain development. GABA synthesis is controlled by enzymes derived from two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce transcript isoforms. While the full-length GAD1 transcript (GAD67) has been implicated in the neuropathology of schizophrenia, the transcript structure of GAD1 in the human brain has not been fully characterized. In this study, with the use of RNA sequencing and PCR technologies, we report the discovery of 10 novel transcripts of GAD1 in the human brain. Expression levels of four novel GAD1 transcripts (8A, 8B, I80 and I86) showed a lifespan trajectory expression pattern that is anticorrelated with the expression of the full-length GAD1 transcript. In addition, methylation levels of two CpG loci within the putative GAD1 promoter were significantly associated with the schizophrenia-risk SNP rs3749034 and with the expression of GAD25 in dorsolateral prefrontal cortex (DLPFC). Moreover, schizophrenia patients who had completed suicide and/or were positive for nicotine exposure had significantly higher full-length GAD1 expression in the DLPFC. Alternative splicing of GAD1 and epigenetic state appear to play roles in the developmental profile of GAD1 expression and may contribute to GABA dysfunction in the PFC and hippocampus of patients with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Kasey N. Davis
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., USA
| | - Chao Li
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Yuan Gao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., USA
| | - Daniel R. Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Psychiatry and Behavior Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joel E. Kleinman
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Psychiatry and Behavior Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Thomas M. Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA,Department of Psychiatry and Behavior Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Zhong S, Wu B, Han Y, Cao Y, Yang L, Luo SX, Chen Y, Zhang H, Zhao G. Identification of Driver Genes and Key Pathways of Pediatric Brain Tumors and Comparison of Molecular Pathogenesis Based on Pathologic Types. World Neurosurg 2017; 107:990-1000. [PMID: 28751139 DOI: 10.1016/j.wneu.2017.07.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study is to identify pediatric brain tumors (PBT) driver genes and key pathways to detect the expression of the driver genes and also to clarify the relationship between patients' prognosis and expression of driver genes. METHODS The gene expression profile of GSE50161 was analyzed to identify the differentially expressed genes (DEGs) between tumor tissue and the normal tissue. Gene ontology, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were conducted to identify the enrichment functions, pathways, and hub genes. After hub genes were identified, quantitative reverse transcription polymerase chain reaction was used to confirm the differential expression of these hub genes. Survival data of 325 patients' were analyzed to clarify the relationship between prognosis and expression levels of the mutual hub genes. RESULTS Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that there were 13 common functions and 3 common pathways which were upregulated or downregulated among the 4 groups. Mutual hub genes were somatostatin (SST), glutamate decarboxylase 2 (GAD2), and single copy human parvalbumin gene (PVALB). The expression of SST, GAD2, and PVALB in glioma cells significantly decreased compared with normal glial cells (P < 0.05). In addition, survival analysis showed a favorable progression-free and overall survival in patients with glioma with SST, GAD2, and PVALB high expression (P < 0.05). CONCLUSIONS SST, GAD2, and PVALB significantly decrease in glioma cells compared with normal glial cells. Survival analysis suggests that patients with high-expressed SST, GAD2, and PVALB have a longer overall and progression-free survival. The differential expressed genes identified in this study provide novel targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China; Clinical College, Jilin University, Changchun, China
| | - Bo Wu
- Clinical College, Jilin University, Changchun, China
| | - Yujuan Han
- Clinical College, Jilin University, Changchun, China
| | - Yingshu Cao
- Clinical College, Jilin University, Changchun, China
| | - Liu Yang
- College of Public Health, Jilin University, Changchun, China
| | - Sean X Luo
- Department of Vascular Surgery, Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| | - Yong Chen
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huimao Zhang
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Hallford P, Clair DS, Halley L, Mustard C, Wei J. A study of type-1 diabetes associated autoantibodies in schizophrenia. Schizophr Res 2016; 176:186-190. [PMID: 27474348 DOI: 10.1016/j.schres.2016.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/02/2023]
Abstract
Epidemiological studies revealed an association between type-1 diabetes (T1D) and schizophrenia but the findings reported to date have been controversial. To clarify the inconsistency across studies, T1D-associated autoantibodies were examined in plasma samples collected from 272 patients with schizophrenia and 276 control subjects. An in-house enzyme-linked immunosorbent assay (ELISA) was developed using three linear peptide antigens, one of which was derived from glutamic acid decarboxylase (GAD) and two were derived from insulinoma-associated antigen 2 (IA2). Mann-Whitney U test showed a significant decrease in the levels of plasma IgG against the IA2b antigen in schizophrenia patients as compared to control subjects (Z=-3.54, p=0.0007), while no significant difference was found between these two groups either in anti-IA2a IgG levels (Z=-1.62, p=0.105) or in anti-GAD IgG levels (Z=-1.63, p=0.104). Linear regression analysis indicated no association of antipsychotic medication with the levels of plasma IgG against IA2a, IA2b or GAD, while the levels of plasma IgG for these 3 peptide antigens were significantly correlated with each other. Binary logistic regression showed that neither the DQ2.5 variant nor the DQ8 variant was associated with circulating levels of 3 T1D-associated autoantibodies in both the patient group and the control group. The coefficient of variation was 10.7% for anti-IA2a IgG assay, 10.1% for anti-IA2b IgG assay and 10.7% for anti-GAD IgG assay. The present work suggests that T1D-associated antibodies are unlikely to confer risk of schizophrenia and that the in-house ELISA developed with linear peptide antigens is highly reproducible.
Collapse
Affiliation(s)
- Philomena Hallford
- Division of Health Research, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness IV2 3JH, UK
| | - David St Clair
- Department of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Lorna Halley
- Division of Health Research, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness IV2 3JH, UK
| | - Colette Mustard
- Division of Health Research, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness IV2 3JH, UK
| | - Jun Wei
- Division of Health Research, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness IV2 3JH, UK.
| |
Collapse
|