1
|
Zhang V, Fisher AL, Hewitt MS, Ganz T, Nemeth E, Sangkhae V. Maternal prolactin or estrogen signaling in hepatocytes does not regulate iron homeostasis during pregnancy. Haematologica 2024; 109:4116-4119. [PMID: 39086305 PMCID: PMC11609807 DOI: 10.3324/haematol.2024.285456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Vida Zhang
- UCLA Center for Iron Disorders, UCLA Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Allison L Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Marguerite S Hewitt
- UCLA Center for Iron Disorders, UCLA Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Tomas Ganz
- UCLA Center for Iron Disorders, UCLA Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Elizabeta Nemeth
- UCLA Center for Iron Disorders, UCLA Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Veena Sangkhae
- UCLA Center for Iron Disorders, UCLA Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
2
|
Ihalainen JK, Mikkonen RS, Ackerman KE, Heikura IA, Mjøsund K, Valtonen M, Hackney AC. Beyond Menstrual Dysfunction: Does Altered Endocrine Function Caused by Problematic Low Energy Availability Impair Health and Sports Performance in Female Athletes? Sports Med 2024; 54:2267-2289. [PMID: 38995599 PMCID: PMC11393114 DOI: 10.1007/s40279-024-02065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Low energy availability, particularly when problematic (i.e., prolonged and/or severe), has numerous negative consequences for health and sports performance as characterized in relative energy deficiency in sport. These consequences may be driven by disturbances in endocrine function, although scientific evidence clearly linking endocrine dysfunction to decreased sports performance and blunted or diminished training adaptations is limited. We describe how low energy availability-induced changes in sex hormones manifest as menstrual dysfunction and accompanying hormonal dysfunction in other endocrine axes that lead to adverse health outcomes, including negative bone health, impaired metabolic activity, undesired outcomes for body composition, altered immune response, problematic cardiovascular outcomes, iron deficiency, as well as impaired endurance performance and force production, all of which ultimately may influence athlete health and performance. Where identifiable menstrual dysfunction indicates hypothalamic-pituitary-ovarian axis dysfunction, concomitant disturbances in other hormonal axes and their impact on the athlete's health and sports performance must be recognized as well. Given that the margin between podium positions and "losing" in competitive sports can be very small, several important questions regarding low energy availability, endocrinology, and the mechanisms behind impaired training adaptations and sports performance have yet to be explored.
Collapse
Affiliation(s)
- Johanna K Ihalainen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland.
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland.
| | - Ritva S Mikkonen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ida A Heikura
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Katja Mjøsund
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
- National Olympic Training Centre Helsinki, Helsinki, Finland
| | - Maarit Valtonen
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Kastrati L, Groothof D, Quezada-Pinedo HG, Raeisi-Dehkordi H, Bally L, De Borst MH, Bakker SJL, Vidal PM, Eisenga MF, Muka T. Utility of iron biomarkers in differentiating menopausal status: Findings from CoLaus and PREVEND. Maturitas 2024; 179:107872. [PMID: 37952488 DOI: 10.1016/j.maturitas.2023.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
AIM To examine the association of iron biomarkers with menopausal status and assess whether these biomarkers can help differentiate menopausal status beyond age. METHODS In this cross-sectional study we included 1679 women from the CoLaus and 2133 from the PREVEND cohorts, with CoLaus used as primary cohort and PREVEND for replication. Ferritin, transferrin, iron, and transferrin saturation (TSAT) were used to assess iron status. Hepcidin and soluble transferrin receptor were assessed only in PREVEND. Menopausal status was self-reported and defined as menopausal or non-menopausal. Logistic regressions were used to explore the association of these iron biomarkers with menopause status. Sensitivity, specificity, area under the receiver operating characteristic curves (AUC), positive and negative predictive values as well as cut-off points for the iron biomarkers were calculated. The model with the highest AUC was defined as the best. RESULTS In the CoLaus and PREVEND cohorts, respectively, 513 (30.6 %) and 988 (46.3 %) women were postmenopausal. Ferritin (OR, 2.20; 95 % CI 1.72-2.90), transferrin (OR, 0.03; 95 % CI 0.01-0.10), and TSAT (OR, 1.28; 95 % CI 1.06-1.54) were significantly associated with menopausal status in CoLaus, with the findings replicated in PREVEND. AUC of age alone was 0.971. The best model resulted from combining age, ferritin, and transferrin, with an AUC of 0.976, and sensitivity and specificity of 87.1 % and 96.5 %, respectively. Adding transferrin and ferritin to a model with age improved menopause classification by up to 7.5 %. In PREVEND, a model with age and hepcidin outperformed a model with age, ferritin, and transferrin. CONCLUSION Iron biomarkers were consistently associated with menopausal status in both cohorts, and modestly improved a model with age alone for differentiating menopause status. Our findings on hepcidin need replication.
Collapse
Affiliation(s)
- Lum Kastrati
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Dion Groothof
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Hugo G Quezada-Pinedo
- The Generation R Study Group, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hamidreza Raeisi-Dehkordi
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin H De Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Pedro-Marques Vidal
- Department of Medicine, internal medicine, Lausanne university hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Taulant Muka
- Epistudia, 3011 Bern, Switzerland; Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Gillies GS, Munley JA, Kelly LS, Pons EE, Kannan KB, Bible LE, Efron PA, Mohr AM. Anemia Recovery After Lung Contusion, Hemorrhagic Shock, and Chronic Stress Is Gender-Specific in a Rat Model. Surg Infect (Larchmt) 2023; 24:773-781. [PMID: 37903014 PMCID: PMC10659020 DOI: 10.1089/sur.2023.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Background: Severe trauma and hemorrhagic shock lead to persistent anemia. Although biologic gender is known to modulate inflammatory responses after critical illness, the impact of gender on anemia recovery after injury remains unknown. The aim of this study was to identify gender-specific differences in anemia recovery after critical illness. Materials and Methods: Male and proestrus female Sprague-Dawley rats (n = 8-9 per group) were subjected to lung contusion and hemorrhagic shock (LCHS) or LCHS with daily chronic stress (LCHS/CS) compared with naïve. Hematologic data, bone marrow progenitor growth, and bone marrow and liver gene transcription were analyzed on day seven. Significance was defined as p < 0.05. Results: Males lost substantial weight after LCHS and LCHS/CS compared with naïve males, while female LCHS rats did not compared with naive counterparts. Male LCHS rats had a drastic decrease in hemoglobin from naïve males. Male LCHS/CS rats had reduced colony-forming units-granulocyte, -erythrocyte, -monocyte, -megakaryocyte (CFU-GEMM) and burst-forming unit-erythroid (BFU-E) when compared with female counterparts. Naïve, LCHS, and LCHS/CS males had lower serum iron than their respective female counterparts. Liver transcription of BMP4 and BMP6 was elevated after LCHS and LCHS/CS in males compared with females. The LCHS/CS males had decreased expression of bone marrow pro-erythroid factors compared with LCHS/CS females. Conclusions: After trauma with or without chronic stress, male rats demonstrated increased weight loss, substantial decrease in hemoglobin level, dysregulated iron metabolism, substantial suppression of bone marrow erythroid progenitor growth, and no change in transcription of pro-erythroid factors. These findings confirm that gender is an important variable that impacts anemia recovery and bone marrow dysfunction after traumatic injury and shock in this rat model.
Collapse
Affiliation(s)
- Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
5
|
Satué K, Fazio E, Medica P. Estrogen-iron axis in cyclic mares: Effect of age. Theriogenology 2023; 209:178-183. [PMID: 37418858 DOI: 10.1016/j.theriogenology.2023.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
In woman and in animal models, estrogens are involved in iron (Fe) homeostasis supporting the hypothesis of the existence of an "estrogen-iron axis". Since advancing age leads to a decrease in estrogen levels, the mechanisms of Fe regulation could be compromised. In cyclic and pregnant mares, to date, there is evidence linking the iron state with estrogens pattern. Then, the objective of this study was to determine the relationship among Fe, ferritin (Ferr), hepcidin (Hepc) and estradiol-17β (E2) in cyclic mares with advancing age. A total of 40 Spanish Purebred mares of different ranges of age was analyzed: 4-6 years (n = 10), 7-9 years (n = 10), 10-12 years (n = 10), and >12 years (n = 10). Blood samples were obtained on days -5, 0, +5 and + 16 of the cycle. Compared to mares of 4-6 years, serum Ferr was significantly higher (P < 0.01) and Fe significantly lower (P < 0.01) in mares >12 years of age. Hepc was significantly higher in mares >12 years (P < 0.01) than in those 7-9 years of age. E2 levels were higher in mares of 7-9 years (P < 0.01) than in 4-6 and >12 years of age. Fe and Ferr were negatively correlated with Hepc (r = -0.71 and r = -0.02, respectively). E2 was negatively correlated with Ferr and Hepc (r = -0.28 and r = -0.50, respectively), and positively with Fe (r = 0.31). There is a direct relationship between E2 and Fe metabolism, mediated by the inhibition of Hepc in Spanish Purebred mares. The reduction of E2 decreases the inhibitory effects on Hepc, increasing the levels of stored Fe and mobilizing less the free Fe in circulation. Based on the fact that ovarian estrogens participate in changes in the parameters indicative of iron status with age, the existence of an "estrogen-iron axis" in the mares'estrous cycle could be considered. Future studies are required to clarify these hormonal and metabolic interrelationships in the mare.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
6
|
Al-Akabi DF, Hafth HA. Physiological effect of iron status on patients with polycystic ovary syndrome in Basrah city. J Med Biochem 2023; 42:530-535. [PMID: 37790203 PMCID: PMC10542276 DOI: 10.5937/jomb0-39091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 10/05/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological diseases that affect the fertility in women in Basra governorate. The current study was designed in order to assess iron aberrations in PCOS patients by measuring the related parameters and their relationship with sex hormones in patients with PCOS. Serum samples were collected from 45 PCOS patients and 45 controls from a private women's clinic and were measured by ELISA in a private medical laboratory. The results showed a significant decrease in the level of hepcidin, transferrin and estradiol versus a significant increase in iron, ferritin, progesterone and testosterone. The current study showed a clear imbalance in the level of iron and its serum regulating parameters in in PCOS women, and there is an effective correlation between iron status and sex hormones.
Collapse
Affiliation(s)
- Dalal F. Al-Akabi
- Al-Kunooze University College, Department of Medical Laboratory Techniques, Basrah, Iraq
| | - Hanadi A. Hafth
- Al-Kunooze University College, Dental Department, Basrah, Iraq
| |
Collapse
|
7
|
Sangkhae V, Fisher AL, Ganz T, Nemeth E. Iron Homeostasis During Pregnancy: Maternal, Placental, and Fetal Regulatory Mechanisms. Annu Rev Nutr 2023; 43:279-300. [PMID: 37253681 PMCID: PMC10723031 DOI: 10.1146/annurev-nutr-061021-030404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pregnancy entails a large negative balance of iron, an essential micronutrient. During pregnancy, iron requirements increase substantially to support both maternal red blood cell expansion and the development of the placenta and fetus. As insufficient iron has long been linked to adverse pregnancy outcomes, universal iron supplementation is common practice before and during pregnancy. However, in high-resource countries with iron fortification of staple foods and increased red meat consumption, the effects of too much iron supplementation during pregnancy have become a concern because iron excess has also been linked to adverse pregnancy outcomes. In this review, we address physiologic iron homeostasis of the mother, placenta, and fetus and discuss perturbations in iron homeostasis that result in pathological pregnancy. As many mechanistic regulatory systems have been deduced from animal models, we also discuss the principles learned from these models and how these may apply to human pregnancy.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Allison L Fisher
- Endocrine Unit and Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Ganz
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
8
|
Lai W, Chen J, Wang T, Liu Q. Crosstalk between ferroptosis and steroid hormone signaling in gynecologic cancers. Front Mol Biosci 2023; 10:1223493. [PMID: 37469703 PMCID: PMC10352791 DOI: 10.3389/fmolb.2023.1223493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a novel types of regulated cell death and is widely studied in cancers and many other diseases in recent years. It is characterized by iron accumulation and intense lipid peroxidation that ultimately inducing oxidative damage. So far, signaling pathways related to ferroptosis are involved in all aspects of determining cell fate, including oxidative phosphorylation, metal-ion transport, energy metabolism and cholesterol synthesis progress, et al. Recently, accumulated studies have demonstrated that ferroptosis is associated with gynecological oncology related to steroid hormone signaling. This review trends to summarize the mechanisms and applications of ferroptosis in cancers related to estrogen and progesterone, which is expected to provide a theoretical basis for the prevention and treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Wen Lai
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qiaoling Liu
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Satué K, Fazio E, La Fauci D, Bruschetta G, Medica P. Adaptive response of estrogen-iron axis in pregnant Purebred Spanish mares of different age. J Equine Vet Sci 2023:104827. [PMID: 37247748 DOI: 10.1016/j.jevs.2023.104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The maintenance of iron (Fe) homeostasis is vital for the physiological function along life. In sexually mature humans and experimental animals, estrogens downregulate hepcidin (Hpc) expression, in order to improve the intestinal absorption and to mobilize Fe stores for maternal erythropoietic expansion and placental development. However, changes of these mechanisms related to regulation of Hpc on the availability of Fe during gestation with advancing age in mares, remain unknown. The objective of this study was to evaluate the interrelationships between serum Fe, Ferritin (Ferr) and Hpc with estrone (E1) and estradiol-17β (E2) concentrations in pregnant mares of different ages. Blood samples were taken from 40 pregnant Spanish Purebred mares belonging to 4 different age groups, 10 subjects for each group: 4-6 years, 7-9 years, 10-12 years, and > 12 years were used in this study. Fe concentrations of 4-6 and 7-9 years groups were higher (P < .01) than 10-12 and >12 years groups. Ferr concentrations of 4-6 years group were higher (P < .01) than other groups. Hpc concentrations increased and E1 decreased (P < .01) in > 12 years group compared to other age groups. E2 concentrations of 7-9, 10-12 and >12 years groups were higher (P < .01) than those of 4-6 years group; 7-9 years group had higher E2 concentrations (P < .01) than > 12 years group. Fe and Ferr were negatively correlated with Hpc (r = -0.81 and r = -0.67, respectively). E1 and E2 were negatively correlated with Fe (r = -0.23 and r = -0.11, respectively). E2 was positively correlated with Hpc (r = 0.78). In pregnant Spanish Purebred mare, the increase of estrogens, according to the more efficient iron status in response to Hpc inhibition and consequent mobilization of circulating and iron reserve, shows the existence of "estrogen-iron axis" in young mares. Nevertheless, these mechanisms are reversed in old mares, suggesting a less efficient iron metabolism with advancing age. It is hoped that new investigations are needed to understand in depth and clarify further the complex metabolic and hormonal mechanisms involved also in equine species.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, Biochemistry Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
10
|
Satué K, Fazio E, La Fauci D, Medica P. Changes of Hepcidin, Ferritin and Iron Levels in Cycling Purebred Spanish Mares. Animals (Basel) 2023; 13:ani13071229. [PMID: 37048485 PMCID: PMC10093536 DOI: 10.3390/ani13071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Several studies have demonstrated that in woman the sex hormones such as estrogen (E2) and progesterone (P4) influence iron (Fe) regulation, contributing to variations in Fe parameters along the menstrual cycle. These mechanisms based on the regulation of hepcidin (Hepc) which limits Fe availability during the cycle, remain poorly characterized in healthy mares. The objective of this study was to establish the relationship between Hepc, Fe, ferritin (Ferr), and the primary ovarian hormones E2 and P4 in cycling Purebred Spanish mares. Blood samples were taken from 31 Purebred Spanish mares day −5, on day 0, day +5 and day +16 of the cycle. Fe and Ferr significantly increased and Hepc decreased during pre- and ovulatory periods. The secretion peak of estradiol-17β (E2) was reached on day 0 and progesterone (P4) between days +5 and +16. Fe and Ferr were positively correlated (r = 0.57). Fe and Ferr were negatively correlated with Hepc (r = −0.72 and r = −0.02, respectively). E2 and P4 were negatively and positively correlated with Hepc (r = −0.753 and r = 0.54, respectively). In cycling Purebred Spanish mares there is a measurable relationship between steroid hormones and systemic Fe metabolism. Estrogenic dominance in the pre- and ovulatory period allows for a more effective iron status, mediated by hepcidin inhibition. However, P4 during the luteal phase substantially reduces serum Fe and iron stores, possibly related to Hepc stimulation. Future research is required to clarify the relationship between steroid hormones and iron metabolism at the molecular level in equids.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, 46115 Valencia, Spain
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Viale Palatucci 13, 98168 Messina, Italy
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Viale Palatucci 13, 98168 Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Viale Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
11
|
Badenhorst CE, Forsyth AK, Govus AD. A contemporary understanding of iron metabolism in active premenopausal females. Front Sports Act Living 2022; 4:903937. [PMID: 35966107 PMCID: PMC9366739 DOI: 10.3389/fspor.2022.903937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Iron metabolism research in the past decade has identified menstrual blood loss as a key contributor to the prevalence of iron deficiency in premenopausal females. The reproductive hormones estrogen and progesterone influence iron regulation and contribute to variations in iron parameters throughout the menstrual cycle. Despite the high prevalence of iron deficiency in premenopausal females, scant research has investigated female-specific causes and treatments for iron deficiency. In this review, we provide a comprehensive discussion of factors that influence iron status in active premenopausal females, with a focus on the menstrual cycle. We also outline several practical guidelines for monitoring, diagnosing, and treating iron deficiency in premenopausal females. Finally, we highlight several areas for further research to enhance the understanding of iron metabolism in this at-risk population.
Collapse
Affiliation(s)
- Claire E. Badenhorst
- School of Sport, Exercise, and Nutrition, College of Health, Massey University, Auckland, New Zealand
- *Correspondence: Claire E. Badenhorst
| | - Adrienne K. Forsyth
- School of Behavioural and Health Science, Australian Catholic University, Fitzroy, VIC, Australia
| | - Andrew D. Govus
- Discipline of Sport and Exercise, Department of Sport, Exercise, and Nutrition Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Hanafusa N, Tu C, McCullough K, Bieber B, Pisoni RL, Robinson BM, Hasegawa T, Nangaku M. An Investigation into Possible Sex Differences in Association of Hemoglobin with Survival Among Hemodialysis Patients in the J-DOPPS Cohort. Nephrology (Carlton) 2022; 27:795-803. [PMID: 35442547 DOI: 10.1111/nep.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
Abstract
AIMS Lower hemoglobin levels are common among females without kidney diseases. However, little is known about the sex-specific management of anemia in hemodialysis patients. METHODS This prospective cohort study investigated the role of sex differences in the association between categorical baseline or time-varying hemoglobin levels and all-cause mortality via cox regression using data from 6890 patients the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS, 2005-2015). Likelihood ratio tests were used to evaluate the effect modification of sex on the relationship between hemoglobin and mortality. RESULTS A total of 781 patients died during the median follow-up of 31 months. Mortality risk, adjusted for case mix, varied between five hemoglobin categories, with the highest category (≥12 g/dl) having a hazard ratio of 0.73 (0.41-1.29) for females and 2.02 (1.03-3.95) for males versus 10-10.9 g/dl. Despite this difference, the p-value comparing the overall among males versus females was.35. Similar associations were observed in models stratified by patient age (<75 years), time on dialysis (≤1 year), and models lagging the hemoglobin exposure. CONCLUSIONS The results based on this sample of Japanese hemodialysis patients did not support the hypothesis that the association between hemoglobin and survival differed by sex. We also could not conclude that the association was identical, as the parameter estimates are consistent with male patients having a relatively greater mortality risk than female patients at higher hemoglobin levels. More detailed investigations into the effects of higher hemoglobin levels by sex might help better understand strategies for anemia management.
Collapse
Affiliation(s)
- Norio Hanafusa
- Department of Blood Purification, Tokyo Women's Medical University, Tokyo, Japan
| | - Charlotte Tu
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | | | - Brian Bieber
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | | | | | - Takeshi Hasegawa
- Showa University Research Administraiton Center, Tokyo.,Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Li LX, Guo FF, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci 2022; 79:201. [PMID: 35325321 PMCID: PMC11071846 DOI: 10.1007/s00018-022-04239-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a global public health challenge due to the high incidence and lack of effective therapeutics. Evidence from animal studies and ALD patients has demonstrated that iron overload is a hallmark of ALD. Ethanol exposure can promote iron absorption by downregulating the hepcidin expression, which is probably mediated by inducing oxidative stress and promoting erythropoietin (EPO) production. In addition, ethanol may enhance iron uptake in hepatocytes by upregulating the expression of transferrin receptor (TfR). Iron overload in the liver can aggravate ethanol-elicited liver damage by potentiating oxidative stress via Fenton reaction, promoting activation of Kupffer cells (KCs) and hepatic stellate cells (HSCs), and inducing a recently discovered programmed iron-dependent cell death, ferroptosis. This article reviews the current knowledge of iron metabolism, regulators of iron homeostasis, the mechanism of ethanol-induced iron overload, detrimental effects of iron overload in the liver, and potential therapeutic targets.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
14
|
Taneera J, Ali A, Hamad M. The Role of Estrogen Signaling in Cellular Iron Metabolism in Pancreatic β Cells. Pancreas 2022; 51:121-127. [PMID: 35404886 DOI: 10.1097/mpa.0000000000001978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Several lines of evidence suggest that estrogen (17-β estradiol; E2) protects against diabetes mellitus and plays important roles in pancreatic β-cell survival and function. Mounting clinical and experimental evidence also suggest that E2 modulates cellular iron metabolism by regulating the expression of several iron regulatory genes, including hepcidin (HAMP), hypoxia-inducible factor 1-α, ferroportin (SLC40A1), and lipocalin (LCN2). However, whether E2 regulates cellular iron metabolism in pancreatic β cells and whether the antidiabetic effects of E2 can be, at least partially, attributed to its role in iron metabolism is not known. In this context, pancreatic β cells express considerable levels of conventional E2 receptors (ERs; mainly ER-α) and nonconventional G protein-coupled estrogen receptors and hence responsive to E2 signals. Moreover, pancreatic islet cells require significant amounts of iron for proper functioning, replication and survival and, hence, well equipped to manage cellular iron metabolism (acquisition, utilization, storage, and release). In this review, we examine the link between E2 and cellular iron metabolism in pancreatic β cells and discuss the bearing of such a link on β-cell survival and function.
Collapse
Affiliation(s)
| | - Amjad Ali
- From the Research Institute for Medical and Health Sciences
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Matta RA, AbdElftah ME, Essawy MG, Saedii AA. Interplay of serum hepcidin with female sex hormones, metabolic syndrome, and abdominal fat distribution among premenopausal and postmenopausal women. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background and purpose
Hepcidin is the central regulatory molecule of systemic iron homeostasis. Serum ferritin, insulin resistance (IR) and metabolic syndrome (MetS), female sex hormones, and abdominal fat distribution are related to each other and all are linked to menopausal state. Our study was the first to assess the impact of these parameters on hepcidin level among premenopausal women (group I) during the early follicular phase (group I-F) and mid-luteal-phase (group I-L) of the same reproductive cycle and among postmenopausal women (group II). Serum iron parameters, estrogen, progesterone and hepcidin, and plasma insulin were assessed. Abdominal subcutaneous fat (SCF) and peritoneal visceral fat (PVF) thickness were measured by unenhanced- CT. Group I and group II were divided into MetS and non-MetS subgroups.
Results
The entire group II and MetS-stratified subgroups had significant higher hepcidin level than corresponding group I-F and group I-L. Group I-L had significant higher hepcidin than group I-F. Among group I-F, group I-L, and group II, MetS subgroups had higher hepcidin but not hepcidin/ ferritin ratio (H/F) than corresponding non-MetS; and hepcidin had positive correlations with ferritin, insulin, IR, and SCF. In group I-F and group II, hepcidin had positive correlations with estrogen and progesterone; hepcidin levels increase significantly and linearly with increasing number of MetS features; and cut off values of hepcidin for prediction of MetS were 5.8 ≥ and ≥ 10.3 ng/ml respectively. Main contributors to hepcidin were iron and ferritin in all groups, SCF and progesterone in group I-F, and insulin, progesterone, and MetS in group II. H/F ratio was higher in group II.
Conclusion
Postmenopausal state (postMS), MetS, and luteal phase are independently associated with high hepcidin level. Serum iron parameters (iron and ferritin) as main regulators of hepcidin are preserved regardless of menopausal state. Its regulation differs based on menopausal state: IR, MetS, and progesterone in postMS meanwhile abdominal SCF and progesterone in premenopausal states. Despite positive associations of estrogen and progesterone with hepcidin, they do not explain its higher level in postMS. Hepcidin levels linearly increase with number of Mets feature and it had high sensitivity for diagnosis of MetS.
Collapse
|
16
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
17
|
The critical roles of iron during the journey from fetus to adolescent: Developmental aspects of iron homeostasis. Blood Rev 2021; 50:100866. [PMID: 34284901 DOI: 10.1016/j.blre.2021.100866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Iron is indispensable for human life. However, it is also potentially toxic, since it catalyzes the formation of harmful oxidative radicals in unbound form and may facilitate pathogen growth. Therefore, iron homeostasis needs to be tightly regulated. Rapid growth and development require large amounts of iron, while (especially young) children are vulnerable to infections with iron-dependent pathogens due to an immature immune system. Moreover, unbalanced iron status early in life may have effects on the nervous system, immune system and gut microbiota that persist into adulthood. In this narrative review, we assess the critical roles of iron for growth and development and elaborate how the body adapts to physiologically high iron demands during the journey from fetus to adolescent. As a first step towards the development of clinical guidelines for the management of iron disorders in children, we summarize the unmet needs regarding the developmental aspects of iron homeostasis.
Collapse
|
18
|
Zheng H, Badenhorst CE, Lei TH, Liao YH, Che Muhamed AM, Fujii N, Kondo N, Mündel T. Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. Am J Physiol Regul Integr Comp Physiol 2021; 320:R780-R790. [PMID: 33787332 DOI: 10.1152/ajpregu.00014.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The current study investigated whether ambient heat augments the inflammatory and postexercise hepcidin response in women and if menstrual phase and/or self-pacing modulate these physiological effects. Eight trained females (age: 37 ± 7 yr; V̇o2max: 46 ± 7 mL·kg-1·min-1; peak power output: 4.5 ± 0.8 W·kg-1) underwent 20 min of fixed-intensity cycling (100 W and 125 W) followed by a 30-min work trial (∼75% V̇o2max) in a moderate (MOD: 20 ± 1°C, 53 ± 8% relative humidity) and warm-humid (WARM: 32 ± 0°C, 75 ± 3% relative humidity) environment in both their early follicular (days 5 ± 2) and midluteal (days 21 ± 3) phases. Mean power output was 5 ± 4 W higher in MOD than in WARM (P = 0.02) such that the difference in core temperature rise was limited between environments (-0.29 ± 0.18°C in MOD, P < 0.01). IL-6 and hepcidin both increased postexercise (198% and 38%, respectively); however, neither was affected by ambient temperature or menstrual phase (all P > 0.15). Multiple regression analysis demonstrated that the IL-6 response to exercise was explained by leukocyte and platelet count (r2 = 0.72, P < 0.01), and the hepcidin response to exercise was explained by serum iron and ferritin (r2 = 0.62, P < 0.01). During exercise, participants almost matched their fluid loss (0.48 ± 0.18 kg·h-1) with water intake (0.35 ± 0.15 L·h-1) such that changes in body mass (-0.3 ± 0.3%) and serum osmolality (0.5 ± 2.0 osmol·kgH2O-1) were minimal or negligible, indicating a behavioral fluid-regulatory response. These results indicate that trained, iron-sufficient women suffer no detriment to their iron regulation in response to exercise with acute ambient heat stress or between menstrual phases on account of a performance-physiological trade-off.
Collapse
Affiliation(s)
- Huixin Zheng
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Claire E Badenhorst
- School of Sport Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | | | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
19
|
Response to invited commentary: Vitamin D 3 supplementation for 8 weeks leads to improved haematological status following the consumption of an iron-fortified breakfast cereal: a double-blind randomised controlled trial in iron-deficient women. Br J Nutr 2021; 125:598-600. [PMID: 32406343 DOI: 10.1017/s0007114520001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Alfaro‐Magallanes VM, Barba‐Moreno L, Rael B, Romero‐Parra N, Rojo‐Tirado MA, Benito PJ, Swinkels DW, Laarakkers CM, Díaz ÁE, Peinado AB. Hepcidin response to interval running exercise is not affected by oral contraceptive phase in endurance-trained women. Scand J Med Sci Sports 2021; 31:643-652. [PMID: 33249618 PMCID: PMC7984293 DOI: 10.1111/sms.13894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
The use of oral contraceptives (OCs) by female athletes may lead to improved iron status, possibly through the regulation of hepcidin by sex hormones. The present work investigates the response of hepcidin and interleukin-6 (IL-6) to an interval exercise in both phases of the OC cycle. Sixteen endurance-trained OC users (age 25.3 ± 4.7 years; height 162.4 ± 5.7 cm; body mass 56.0 ± 5.7 kg; body fat percentage 24.8 ± 6.0%; peak oxygen consumption [VO2peak ]: 47.4 ± 5.5 mL min-1 kg-1 ) followed an identical interval running protocol during the withdrawal and active pill phases of the OC cycle. This protocol consisted of 8 × 3 minutes bouts at 85% VO2peak speed with 90 seconds recovery intervals. Blood samples were collected pre-exercise, and at 0 hour, 3 hours, and 24 hours post-exercise. Pre-exercise 17β-estradiol was lower (P = .001) during the active pill than the withdrawal phase (7.91 ± 1.81 vs 29.36 ± 6.45 pg/mL [mean ± SEM]). No differences were seen between the OC phases with respect to hepcidin or IL-6 concentrations, whether taking all time points together or separately. However, within the withdrawal phase, hepcidin concentrations were higher at 3 hours post-exercise (3.33 ± 0.95 nmol/L) than at pre-exercise (1.04 ± 0.20 nmol/L; P = .005) and 0 hour post-exercise (1.41 ± 0.38 nmol/L; P = .045). Within both OC phases, IL-6 was higher at 0 hour post-exercise than at any other time point (P < .05). Similar trends in hepcidin and IL-6 concentrations were seen at the different time points during both OC phases. OC use led to low 17β-estradiol concentrations during the active pill phase but did not affect hepcidin. This does not, however, rule out estradiol affecting hepcidin levels.
Collapse
Affiliation(s)
- Víctor M. Alfaro‐Magallanes
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Laura Barba‐Moreno
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Beatriz Rael
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Nuria Romero‐Parra
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Miguel A. Rojo‐Tirado
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Pedro J. Benito
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Dorine W. Swinkels
- Department of Laboratory MedicineTranslational Metabolic Laboratory (TML 830)Radboud University Medical CenterNijmegenThe Netherlands
- Hepcidinanalysis.comRadboud University Medical CenterNijmegenThe Netherlands
| | - Coby M. Laarakkers
- Department of Laboratory MedicineTranslational Metabolic Laboratory (TML 830)Radboud University Medical CenterNijmegenThe Netherlands
- Hepcidinanalysis.comRadboud University Medical CenterNijmegenThe Netherlands
| | - Ángel E. Díaz
- Clinical LaboratoryDepartment of National Center of Sport Medicine, Health and SportsAEPSADMadridSpain
| | - Ana B. Peinado
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport SciencesUniversidad Politécnica de Madrid (UPM)MadridSpain
| |
Collapse
|
21
|
Peinado AB, Alfaro-Magallanes VM, Romero-Parra N, Barba-Moreno L, Rael B, Maestre-Cascales C, Rojo-Tirado MA, Castro EA, Benito PJ, Ortega-Santos CP, Santiago E, Butragueño J, García-de-Alcaraz A, Rojo JJ, Calderón FJ, García-Bataller A, Cupeiro R. Methodological Approach of the Iron and Muscular Damage: Female Metabolism and Menstrual Cycle during Exercise Project (IronFEMME Study). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020735. [PMID: 33561085 PMCID: PMC7831010 DOI: 10.3390/ijerph18020735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Abstract Background: The increase in exercise levels in the last few years among professional and recreational female athletes has led to an increased scientific interest about sports health and performance in the female athlete population. The purpose of the IronFEMME Study described in this protocol article is to determine the influence of different hormonal profiles on iron metabolism in response to endurance exercise, and the main markers of muscle damage in response to resistance exercise; both in eumenorrheic, oral contraceptive (OC) users and postmenopausal well-trained women. Methods: This project is an observational controlled randomized counterbalanced study. One hundered and four (104) active and healthy women were selected to participate in the IronFEMME Study, 57 of which were eumenorrheic, 31 OC users and 16 postmenopausal. The project consisted of two sections carried out at the same time: iron metabolism (study I) and muscle damage (study II). For the study I, the exercise protocol consisted of an interval running test (eight bouts of 3 min at 85% of the maximal aerobic speed), whereas the study II protocol was an eccentric-based resistance exercise protocol (10 sets of 10 repetitions of plate-loaded barbell parallel back squats at 60% of their one repetition maximum (1RM) with 2 min of recovery between sets). In both studies, eumenorrheic participants were evaluated at three specific moments of the menstrual cycle: early-follicular phase, late-follicular phase and mid-luteal phase; OC users performed the trial at two moments: withdrawal phase and active pill phase. Lastly, postmenopausal women were only tested once, since their hormonal status does not fluctuate. The three-step method was used to verify the menstrual cycle phase: calendar counting, blood test confirmation, and urine-based ovulation kits. Blood samples were obtained to measure sex hormones, iron metabolism parameters, and muscle damage related markers. Discussion: IronFEMME Study has been designed to increase the knowledge regarding the influence of sex hormones on some aspects of the exercise-related female physiology. Iron metabolism and exercise-induced muscle damage will be studied considering the different reproductive status present throughout well-trained females’ lifespan. Trial registration The study was registered at Clinicaltrials.gov NCT04458662 on 2 July 2020.
Collapse
Affiliation(s)
- Ana B. Peinado
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Victor M. Alfaro-Magallanes
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Nuria Romero-Parra
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Laura Barba-Moreno
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Beatriz Rael
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Cristina Maestre-Cascales
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miguel A. Rojo-Tirado
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Eliane A. Castro
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, 2850 Concepción, Chile
| | - Pedro J. Benito
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | - Javier Butragueño
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
| | - Antonio García-de-Alcaraz
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Faculty of Educational Sciences, Universidad de Almería, 04120 Almería, Spain
| | - Jesús J. Rojo
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Francisco J. Calderón
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alberto García-Bataller
- Department of Sports, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Rocío Cupeiro
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
Azad P, Villafuerte FC, Bermudez D, Patel G, Haddad GG. Protective role of estrogen against excessive erythrocytosis in Monge's disease. Exp Mol Med 2021; 53:125-135. [PMID: 33473144 PMCID: PMC8080600 DOI: 10.1038/s12276-020-00550-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Monge's disease (chronic mountain sickness (CMS)) is a maladaptive condition caused by chronic (years) exposure to high-altitude hypoxia. One of the defining features of CMS is excessive erythrocytosis with extremely high hematocrit levels. In the Andean population, CMS prevalence is vastly different between males and females, being rare in females. Furthermore, there is a sharp increase in CMS incidence in females after menopause. In this study, we assessed the role of sex hormones (testosterone, progesterone, and estrogen) in CMS and non-CMS cells using a well-characterized in vitro erythroid platform. While we found that there was a mild (nonsignificant) increase in RBC production with testosterone, we observed that estrogen, in physiologic concentrations, reduced sharply CD235a+ cells (glycophorin A; a marker of RBC), from 56% in the untreated CMS cells to 10% in the treated CMS cells, in a stage-specific and dose-responsive manner. At the molecular level, we determined that estrogen has a direct effect on GATA1, remarkably decreasing the messenger RNA (mRNA) and protein levels of GATA1 (p < 0.01) and its target genes (Alas2, BclxL, and Epor, p < 0.001). These changes result in a significant increase in apoptosis of erythroid cells. We also demonstrate that estrogen regulates erythropoiesis in CMS patients through estrogen beta signaling and that its inhibition can diminish the effects of estrogen by significantly increasing HIF1, VEGF, and GATA1 mRNA levels. Taken altogether, our results indicate that estrogen has a major impact on the regulation of erythropoiesis, particularly under chronic hypoxic conditions, and has the potential to treat blood diseases, such as high altitude severe erythrocytosis.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Francisco C Villafuerte
- Laboratorio de Fisiologia del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Daniela Bermudez
- Laboratorio de Fisiologia del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Gargi Patel
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel G Haddad
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
23
|
Alfaro-Magallanes VM, Benito PJ, Rael B, Barba-Moreno L, Romero-Parra N, Cupeiro R, Swinkels DW, Laarakkers CM, Peinado AB. Menopause Delays the Typical Recovery of Pre-Exercise Hepcidin Levels after High-Intensity Interval Running Exercise in Endurance-Trained Women. Nutrients 2020; 12:nu12123866. [PMID: 33348847 PMCID: PMC7766833 DOI: 10.3390/nu12123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Menopause commonly presents the gradual accumulation of iron in the body over the years, which is a risk factor for diseases such as cancer, osteoporosis, or cardiovascular diseases. Running exercise is known to acutely increase hepcidin levels, which reduces iron absorption and recycling. As this fact has not been studied in postmenopausal women, this study investigated the hepcidin response to running exercise in this population. Thirteen endurance-trained postmenopausal women (age: 51.5 ± 3.89 years; height: 161.8 ± 4.9 cm; body mass: 55.9 ± 3.6 kg; body fat: 24.7 ± 4.2%; peak oxygen consumption: 42.4 ± 4.0 mL·min-1·kg-1) performed a high-intensity interval running protocol, which consisted of 8 × 3 min bouts at 85% of the maximal aerobic speed with 90-second recovery. Blood samples were collected pre-exercise, 0, 3, and 24 hours post-exercise. As expected, hepcidin exhibited higher values at 3 hours post-exercise (3.69 ± 3.38 nmol/L), but also at 24 hours post-exercise (3.25 ± 3.61 nmol/L), in comparison with pre-exercise (1.77 ± 1.74 nmol/L; p = 0.023 and p = 0.020, respectively) and 0 hour post-exercise (2.05 ± 2.00 nmol/L; p = 0.021 and p = 0.032, respectively) concentrations. These differences were preceded by a significant increment of interleukin-6 at 0 hour post-exercise (3.41 ± 1.60 pg/mL) compared to pre-exercise (1.65 ± 0.48 pg/m, p = 0.003), 3 hours (1.50 ± 0.00 pg/mL, p = 0.002) and 24 hours post-exercise (1.52 ± 0.07 pg/mL, p = 0.001). Hepcidin peaked at 3 hours post-exercise as the literature described for premenopausal women but does not seem to be fully recovered to pre-exercise levels within 24 hours post-exercise, as it would be expected. This suggests a slower recovery of basal hepcidin levels in postmenopausal women, suggesting interesting applications in order to modify iron homeostasis as appropriate, such as the prevention of iron accumulation or proper timing of iron supplementation.
Collapse
Affiliation(s)
- Víctor M. Alfaro-Magallanes
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Pedro J. Benito
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
- Correspondence: ; Tel.: +34-910-677-866
| | - Beatriz Rael
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Laura Barba-Moreno
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Dorine W. Swinkels
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Coby M. Laarakkers
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Ana B. Peinado
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | | |
Collapse
|
24
|
Barba-Moreno L, Alfaro-Magallanes VM, de Jonge XAKJ, Díaz AE, Cupeiro R, Peinado AB. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur J Sport Sci 2020; 22:218-226. [PMID: 33317411 DOI: 10.1080/17461391.2020.1853816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of the current study was to investigate iron metabolism in endurance trained women through the interleukin-6, hepcidin and iron responses to exercise along different endogenous hormonal states. Fifteen women performed 40 min treadmill running trials at 75% vVO2peak during three specific phases of the menstrual cycle: early follicular phase (day 3 ± 0.85), mid-follicular phase (day 8 ± 1.09) and luteal phase (day 21 ± 1.87). Venous blood samples were taken pre-, 0 h post- and 3 h post-exercise. Interleukin-6 reported a significant interaction for menstrual cycle phase and time (p=0.014), showing higher interleukin-6 levels at 3 h post-exercise during luteal phase compared to the early follicular phase (p=0.004) and the mid-follicular phase (p=0.002). Iron levels were significantly lower (p=0.009) during the early follicular phase compared to the mid-follicular phase. However, hepcidin levels were not different across menstrual cycle phases (p>0.05). The time-course for hepcidin and interleukin-6 responses to exercise was different from the literature, since hepcidin peak levels occurred at 0 h post-exercise, whereas the highest interleukin-6 levels occurred at 3 h post-exercise. We concluded that menstrual cycle phases may alter interleukin-6 production causing a higher inflammation when progesterone levels are elevated (days 19-21). Moreover, during the early follicular phase a significant reduction of iron levels is observed potentially due to a loss of haemoglobin through menses. According to our results, high intensity exercises should be carefully monitored in these phases in order not to further compromise iron stores.
Collapse
Affiliation(s)
- Laura Barba-Moreno
- Faculty of Sciences for Physical Activity and Sport (INEF), LFE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain
| | - Víctor M Alfaro-Magallanes
- Faculty of Sciences for Physical Activity and Sport (INEF), LFE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Angel E Díaz
- AEPSAD, Clinical laboratory, National Center of Sport Medicine, Health and Sports Department, Madrid, Spain
| | - Rocío Cupeiro
- Faculty of Sciences for Physical Activity and Sport (INEF), LFE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana B Peinado
- Faculty of Sciences for Physical Activity and Sport (INEF), LFE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Mintz J, Mirza J, Young E, Bauckman K. Iron Therapeutics in Women's Health: Past, Present, and Future. Pharmaceuticals (Basel) 2020; 13:E449. [PMID: 33302392 PMCID: PMC7762600 DOI: 10.3390/ph13120449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Iron plays a unique physiological role in the maintenance of homeostasis and the pathological outcomes of the female reproductive tract. The dual nature of elemental iron has created an evolutionary need to tightly regulate its biological concentration. The female reproductive tract is particularly unique due to the constant cycle of endometrial growth and shedding, in addition to the potential need for iron transfer to a developing fetus. Here, iron regulation is explored in a number of physiologic states including the endometrial lining and placenta. While iron dysregulation is a common characteristic in many women's health pathologies there is currently a lack of targeted therapeutic options. Traditional iron therapies, including iron replacement and chelation, are common treatment options for gynecological diseases but pose long term negative health consequences; therefore, more targeted interventions directed towards iron regulation have been proposed. Recent findings show potential benefits in a therapeutic focus on ferritin-hepcidin regulation, modulation of reactive oxygen species (ROS), and iron mediated cell death (ferroptosis). These novel therapeutics are the direct result of previous research in iron's complex signaling pathway and show promise for improved therapy, diagnosis, and prognosis in women's health.
Collapse
Affiliation(s)
| | | | | | - Kyle Bauckman
- Department of Academic Affairs, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33314, USA; (J.M.); (J.M.); (E.Y.)
| |
Collapse
|
26
|
Xiao X, Alfaro-Magallanes VM, Babitt JL. Bone morphogenic proteins in iron homeostasis. Bone 2020; 138:115495. [PMID: 32585319 PMCID: PMC7453787 DOI: 10.1016/j.bone.2020.115495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway plays a central role in regulating hepcidin, which is the master hormone governing systemic iron homeostasis. Hepcidin is produced by the liver and acts on the iron exporter ferroportin to control iron absorption from the diet and iron release from body stores, thereby providing adequate iron for red blood cell production, while limiting the toxic effects of excess iron. BMP6 and BMP2 ligands produced by liver endothelial cells bind to BMP receptors and the coreceptor hemojuvelin (HJV) on hepatocytes to activate SMAD1/5/8 signaling, which directly upregulates hepcidin transcription. Most major signals that influence hepcidin production, including iron, erythropoietic drive, and inflammation, intersect with the BMP-SMAD pathway to regulate hepcidin transcription. Mutation or inactivation of BMP ligands, BMP receptors, HJV, SMADs or other proteins that modulate the BMP-SMAD pathway result in hepcidin dysregulation, leading to iron-related disorders, such as hemochromatosis and iron refractory iron deficiency anemia. Pharmacologic modulators of the BMP-SMAD pathway have shown efficacy in pre-clinical models to regulate hepcidin expression and treat iron-related disorders. This review will discuss recent insights into the role of the BMP-SMAD pathway in regulating hepcidin to control systemic iron homeostasis.
Collapse
Affiliation(s)
- Xia Xiao
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Estrogen signaling differentially alters iron metabolism in monocytes in an Interleukin 6-dependent manner. Immunobiology 2020; 225:151995. [PMID: 32962815 DOI: 10.1016/j.imbio.2020.151995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/16/2023]
Abstract
The ability of monocytes to release or sequester iron affects their role in cancer and inflammation. Previous work has shown that while IL-6 upregulates hepcidin synthesis and enhances iron sequestration, E2 reduces hepcidin synthesis and increases iron release. Given that E2 upregulates IL-6 production in monocytes, it is likely that the exact effect of E2 on iron metabolism in monocytes is shaped by its effect on IL-6 expression. To address this issue, the expression of key iron regulatory proteins was assessed in E2-treated U937, HuT-78, THP-1 and Hep-G2 cells. Iron status was also evaluated in U937 cells treated with the ERα agonist PPT, the ER antagonist ICI-182780, dexamethasone + E2, IL-6 + E2 and in IL-6-silenced U937 cells. E2 treatment reduced hepcidin synthesis in HuT-78, THP-1 and Hep-G2 cells but increased hepcidin synthesis and reduced FPN expression in U937 cells. E2-treated U937 cells also showed reduced HIF-1α and FTH expression and increased TFR1 expression, which associated with increased labile iron content as compared with similarly treated Hep-G2 cells. While treatment of U937 cells with interleukin 6 (IL-6) resulted in increased expression of hepcidin, dexamethasone treatment resulted in reduced hepcidin synthesis relative to E2- or dexamethasone + E2-treated cells; IL-6 silencing also resulted in reduced hepcidin synthesis in U937 cells. Lastly, while iron depletion resulted in increased cell death in U937 cells, E2 treatment resulted in enhanced cell survival and reduced apoptosis. These findings suggest that E2 differentially alters iron metabolism in monocytes in an IL-6 dependent manner.
Collapse
|
28
|
Yang L, Wang H, Yang X, Wu Q, An P, Jin X, Liu W, Huang X, Li Y, Yan S, Shen S, Liang T, Min J, Wang F. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther 2020; 5:138. [PMID: 32732975 PMCID: PMC7393508 DOI: 10.1038/s41392-020-00253-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Iron homeostasis is essential for health; moreover, hepcidin-deficiency results in iron overload in both hereditary hemochromatosis and iron-loading anemia. Here, we identified iron modulators by functionally screening hepcidin agonists using a library of 640 FDA-approved drugs in human hepatic Huh7 cells. We validated the results in C57BL/6J mice and a mouse model of hemochromatosis (Hfe−/− mice). Our screen revealed that the anti-rheumatoid arthritis drug auranofin (AUR) potently upregulates hepcidin expression. Interestingly, we found that canonical signaling pathways that regulate iron, including the Bmp/Smad and IL-6/Jak2/Stat3 pathways, play indispensable roles in mediating AUR’s effects. In addition, AUR induces IL-6 via the NF-κB pathway. In C57BL/6J mice, acute treatment with 5 mg/kg AUR activated hepatic IL-6/hepcidin signaling and decreased serum iron and transferrin saturation. Whereas chronically treating male Hfe−/− mice with 5 mg/kg AUR activated hepatic IL-6/hepcidin signaling, decreasing systemic iron overload, but less effective in females. Further analyses revealed that estrogen reduced the ability of AUR to induce IL-6/hepcidin signaling in Huh7 cells, providing a mechanistic explanation for ineffectiveness of AUR in female Hfe−/− mice. Notably, high-dose AUR (25 mg/kg) induces ferroptosis and causes lipid peroxidation through inhibition of thioredoxin reductase (TXNRD) activity. We demonstrate the ferroptosis inhibitor ferrostatin significantly protects liver toxicity induced by high-dose AUR without comprising its beneficial effect on iron metabolism. In conclusion, our findings provide compelling evidence that TXNRD is a key regulator of ferroptosis, and AUR is a novel activator of hepcidin and ferroptosis via distinct mechanisms, suggesting a promising approach for treating hemochromatosis and hepcidin-deficiency related disorders.
Collapse
Affiliation(s)
- Lei Yang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China.,The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China.,School of Nursing, Xinxiang Medical University, 453003, Xinxiang, China
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China.,The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Xiang Yang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Qian Wu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Peng An
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Xi Jin
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Weiwei Liu
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Xin Huang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Yuzhu Li
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shiyu Yan
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shuying Shen
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Tingbo Liang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China. .,The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
29
|
The Impact of CKD Anaemia on Patients: Incidence, Risk Factors, and Clinical Outcomes-A Systematic Literature Review. Int J Nephrol 2020; 2020:7692376. [PMID: 32665863 PMCID: PMC7349626 DOI: 10.1155/2020/7692376] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Anaemia is a common consequence of chronic kidney disease (CKD); however, the risk factors for its development and its impact on outcomes have not been well synthesised. Therefore, we undertook a systematic review to fully characterise the risk factors associated with the presence of anaemia in patients with CKD and a contemporary synthesis of the risks of adverse outcomes in patients with CKD and anaemia. We searched MEDLINE, EMBASE, and the Cochrane Library from 2002 until 2018 for studies reporting the incidence or prevalence of anaemia and associated risk factors and/or associations between haemoglobin (Hb) or anaemia and mortality, major adverse cardiac events (MACE), hospitalisation, or CKD progression in adult patients with CKD. Extracted data were summarised as risk factors related to the incidence or prevalence of anaemia or the risk (hazard ratio (HR)) of outcome by Hb level (<10, 10-12, >12 g/dL) in patients not on dialysis and in those receiving dialysis. 191 studies met the predefined inclusion criteria. The risk factor most associated with the prevalence of anaemia was CKD stage, followed by age and sex. Mean HRs (95% CI) for all-cause mortality in patients with CKD on dialysis with Hb <10, 10-12, and >12 g/dL were 1.56 (1.43-1.71), 1.17 (1.09-1.26), and 0.91 (0.87-0.96), respectively. Similar patterns were observed for nondialysis patients and for the risks of hospitalisation, MACE, and CKD progression. This is the first known systematic review to quantify the risk of adverse clinical outcomes based on Hb level in patients with CKD. Anaemia was consistently associated with greater mortality, hospitalisation, MACE, and CKD progression in patients with CKD, and risk increased with anaemia severity. Effective treatments that not only treat the anaemia but also reduce the risk of adverse clinical outcomes are essential to help reduce the burden of anaemia and its management in CKD.
Collapse
|
30
|
Koenig MD, Klikuszowian E, O'Brien KO, Pauls H, Steffen A, DeMartelly V, Ruchob R, Welke L, Hemphill N, LaBomascus B, Pezley L, McLeod A, Hirsch B, Ferrans CE, Tussing-Humphreys L. Prepregnancy Obesity Is Not Associated with Iron Utilization during the Third Trimester. J Nutr 2020; 150:1397-1404. [PMID: 32221605 PMCID: PMC7269726 DOI: 10.1093/jn/nxaa065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND An adequate maternal iron supply is crucial for maternal red blood cell (RBC) expansion, placental and fetal growth, and fetal brain development. Obese women may be at risk for poor iron status in pregnancy due to proinflammatory-driven overexpression of hepcidin leading to decreased iron bioavailability. OBJECTIVE The objective of this study was to determine the impact of prepregnancy (PP) obesity on third-trimester maternal iron utilization. DESIGN Using the stable isotope 57Fe, we measured iron utilization in the third trimester in PP obese [BMI (in kg/m2): ≥30] and nonobese (BMI: 18.5-29.9) women. We also assessed iron status, hepcidin, inflammation, erythropoietin, dietary iron intake, and gestational weight gain. Descriptive and inferential statistical tests (e.g., Student t test, Pearson correlation) were used for data analysis. RESULTS Fifty pregnant women (21 PP obese, 29 PP nonobese) were included. Mean age was 27.6 ± 6.8 y and mean gestational age at time of 57Fe administration was 32.7 ± 0.7 wk. Anemia (hemoglobin <11 g/dL for non-black and <10.2 g/dL for black women) affected 38% of women (43% PP obese compared with 35% PP nonobese; P = 0.55). Women with PP obesity had significantly higher C-reactive protein (8.5 compared with 3.4 mg/L, P = 0.0007) and total body iron corrected for inflammation (6.0 compared with 4.3 mg/kg, P = 0.04) compared with the nonobese women. There was no difference in serum hepcidin or iron utilization between the PP BMI groups. CONCLUSION This is the first study to assess the impact of PP obesity on maternal iron utilization. We found no difference in iron utilization in the third trimester of pregnancy in women with and without PP obesity. Despite higher frequency of anemia, women with PP obesity had less depleted body iron stores, suggesting some degree of iron sequestration. This finding should be followed up and extended to understand effects on fetal iron bioavailability.
Collapse
Affiliation(s)
- Mary Dawn Koenig
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elizabeth Klikuszowian
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kimberly O O'Brien
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Heather Pauls
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alana Steffen
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Victoria DeMartelly
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rungnapa Ruchob
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lauren Welke
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nefertiti Hemphill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bazil LaBomascus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lacey Pezley
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bruni Hirsch
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carol Estwing Ferrans
- Department of Women, Children and Family Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lisa Tussing-Humphreys
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Address correspondence to LT-H (e-mail: )
| |
Collapse
|
31
|
Mehta KJ, Busbridge M, Patel VB, Farnaud SJ. Hepcidin secretion was not directly proportional to intracellular iron-loading in recombinant-TfR1 HepG2 cells: short communication. Mol Cell Biochem 2020; 468:121-128. [PMID: 32185675 PMCID: PMC7145775 DOI: 10.1007/s11010-020-03716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Hepcidin is the master regulator of systemic iron homeostasis and its dysregulation is observed in several chronic liver diseases. Unlike the extracellular iron-sensing mechanisms, the intracellular iron-sensing mechanisms in the hepatocytes that lead to hepcidin induction and secretion are incompletely understood. Here, we aimed to understand the direct role of intracellular iron-loading on hepcidin mRNA and peptide secretion using our previously characterised recombinant HepG2 cells that over-express the cell-surface iron-importer protein transferrin receptor-1. Gene expression of hepcidin (HAMP) was determined by real-time PCR. Intracellular iron levels and secreted hepcidin peptide levels were measured by ferrozine assay and immunoassay, respectively. These measurements were compared in the recombinant and wild-type HepG2 cells under basal conditions at 30 min, 2 h, 4 h and 24 h. Data showed that in the recombinant cells, intracellular iron content was higher than wild-type cells at 30 min (3.1-fold, p < 0.01), 2 h (4.6-fold, p < 0.01), 4 h (4.6-fold, p < 0.01) and 24 h (1.9-fold, p < 0.01). Hepcidin (HAMP) mRNA expression was higher than wild-type cells at 30 min (5.9-fold; p = 0.05) and 24 h (6.1-fold; p < 0.03), but at 4 h, the expression was lower than that in wild-type cells (p < 0.05). However, hepcidin secretion levels in the recombinant cells were similar to those in wild-type cells at all time-points, except at 4 h, when the level was lower than wild-type cells (p < 0.01). High intracellular iron in recombinant HepG2 cells did not proportionally increase hepcidin peptide secretion. This suggests a limited role of elevated intracellular iron in hepcidin secretion.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- School of Life Sciences, University of Westminster, London, UK.
| | - Mark Busbridge
- Department of Clinical Biochemistry, Northwest London Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London, UK
| | - Sebastien Je Farnaud
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
32
|
Iron Absorption in Celiac Disease and Nutraceutical Effect of 7-Hydroxymatairesinol. Mini-Review. Molecules 2020; 25:molecules25092041. [PMID: 32349426 PMCID: PMC7249079 DOI: 10.3390/molecules25092041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Anemia is the main extra-gastrointestinal symptom in inflammatory bowel diseases (IBDs). Interleukin-6 (IL-6) and other cytokines are secreted and act in the microenvironment of the small intestine mucous membrane of IBD patients. Iron is essential for multiple cell functions and its homeostasis is regulated by the hepcidin–ferroportin axis. Hepcidin (HEPC) is mainly produced by the liver in response to iron needs but is also an acute phase protein. During inflammation, hepcidin is upregulated by IL-6 and is responsible for iron compartmentalization within cells, in turn causing anemia of inflammation. Tissues other than liver can produce hepcidin in response to inflammatory stimuli, in order to decrease iron efflux at a local level, then acting in an autocrine–paracrine manner. In IBDs and, in particular, in celiac disease (CeD), IL-6 might trigger the expression, upregulation and secretion of hepcidin in the small intestine, reducing iron efflux and exacerbating defective iron absorption. 7-Hydroxymatairesinol (7-HMR) belongs to the family of lignans, polyphenolic compounds produced by plants, and has nutraceutical antioxidant, anti-inflammatory and estrogenic properties. In this mini-review we revise the role of inflammation in IBDs and in particular in CeD, focusing our attention on the close link among inflammation, anemia and iron metabolism. We also briefly describe the anti-inflammatory and estrogenic activity of 7-HMR contained in foods that are often consumed by CeD patients. Finally, considering that HEPC expression is regulated by iron needs, inflammation and estrogens, we explored the hypothesis that 7-HMR consumption could ameliorate anemia in CeD using Caco-2 cells as bowel model. Further studies are needed to verify the regulation pathway through which 7-HMR may interfere with the local production of HEPC in bowel.
Collapse
|
33
|
Donker AE, Galesloot TE, Laarakkers CM, Klaver SM, Bakkeren DL, Swinkels DW. Standardized serum hepcidin values in Dutch children: Set point relative to body iron changes during childhood. Pediatr Blood Cancer 2020; 67:e28038. [PMID: 31724793 DOI: 10.1002/pbc.28038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Use of serum hepcidin measurements in pediatrics would benefit from standardized age- and sex-specific reference ranges in children, in order to enable the establishment of clinical decision limits that are universally applicable. PROCEDURE We measured serum hepcidin-25 levels in 266 healthy Dutch children aged 0.3-17 years, using an isotope dilution mass spectrometry assay, standardized with our commutable secondary reference material (RM), assigned by a candidate primary RM. RESULTS We constructed age- and sex-specific values for serum hepcidin and its ratio with ferritin and transferrin saturation (TSAT). Serum hepcidin levels and hepcidin/ferritin and TSAT/hepcidin ratios were similar for both sexes. Serum hepcidin and hepcidin/ferritin ratio substantially declined after the age of 12 years and TSAT/hepcidin ratio gradually increased with increasing age. Serum hepcidin values for Dutch children <12 years (n = 170) and >12 years (n = 96) were 1.9 nmol/L (median); 0.1-13.1 nmol/L (p2.5-p97.5) and 0.9 nmol/L; 0.0-9.1 nmol/L, respectively. Serum ferritin was the most significant correlate of serum hepcidin in our study population, explaining 15.1% and 7.9% of variance in males and females, respectively. Multivariable linear regression analysis including age, blood sampling time, iron parameters, ALT, CRP, and body mass index as independent variables showed a statistically significant negative association between age as a dichotomous variable (≤12 vs >12 years) and log-transformed serum hepcidin levels in both sexes. CONCLUSIONS We demonstrate that serum hepcidin relative to indicators of body iron is age dependent in children, suggesting that the set point of serum hepcidin relative to stored and circulating iron changes during childhood.
Collapse
Affiliation(s)
- Albertine E Donker
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatrics, Máxima Medical Center, Veldhoven, The Netherlands
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coby M Laarakkers
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Translational Metabolic Laboratory (TML, 830), Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Siem M Klaver
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Translational Metabolic Laboratory (TML, 830), Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk L Bakkeren
- Department of Clinical Chemistry, Máxima Medical Center , Veldhoven, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Translational Metabolic Laboratory (TML, 830), Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Krygier A, Szczepanek-Parulska E, Filipowicz D, Ruchała M. Changes in serum hepcidin according to thyrometabolic status in patients with Graves' disease. Endocr Connect 2020; 9:EC-20-0017. [PMID: 32069222 PMCID: PMC7077520 DOI: 10.1530/ec-20-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Hepcidin is an acute-phase protein and a key regulator of iron homeostasis. Anaemia frequently occurs in patients with thyroid dysfunction, and hepcidin may be a potential link. OBJECTIVES Prospective assessment of hepcidin serum concentration and other parameters related to Fe homeostasis in hyperthyroid patients in the course of GD at diagnosis and during remission. PATIENTS AND METHODS Out of 70 patients recruited, 42 (32 women, 10 men), aged 42.5±15.1 years, met the inclusion criteria. Clinical and biochemical assessment, including hepcidin measurement by ELISA, was performed at baseline (T0) and after restoration of euthyroidism (T1). RESULTS Hepcidin concentration at T0 in the 24 patients who completed the study was significantly higher than the value during euthyroidism (28.7 (8.1-39.4) ng/mL vs. 7.9 (4.3-12.9) ng/mL, p<0.001). Hepcidin level was most significantly correlated with ferritin (rho = 0.723) in women at T0. In both men (377 (171-411) vs. 165 (84-237) ng/mL, p=0.001) and women (84 (23-104) vs. 35 (16-64) ng/mL, p=0.001), a significant decrease in ferritin level was demonstrated following therapy. A significant (p<0.001) increase in mean corpuscular volume (MCV) (83.5 (82.5-87.1) vs. 89.5 (88.8-90.0) fL) and mean concentration of haemoglobin (MCH) (29.0 (28.0-29.4) vs. 30.4 (29.5-31.1) pg) was observed. CONCLUSIONS Hepcidin and ferritin decrease significantly during the transition from a hyperthyroid state to euthyroidism in patients with GD. The observed changes occur in parallel to iron homeostasis fluctuations. During the transition from the hyperthyroid state to euthyroidism, the improvement of haematological status is reflected mainly by the increase in MCV and MCH.
Collapse
Affiliation(s)
- Aleksandra Krygier
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
35
|
Iron status and hepcidin levels as potential regulators of haemoglobin homeostasis in overweight and obese women of childbearing age. J Taibah Univ Med Sci 2019; 14:531-537. [PMID: 31908641 PMCID: PMC6940669 DOI: 10.1016/j.jtumed.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Objectives Overweight is considered a risk factor for anaemia. However, the mechanisms underlying anaemia development in overweight and obese people remain unclear. This study analysed the correlation of iron status (soluble transferrin receptor [sTfR]/log ferritin ratio) and hepcidin levels with haemoglobin (Hb) levels in overweight and obese women of childbearing age. Methods In this cross-sectional study, we recruited 66 women aged 20–29 years with a body mass index ≥23 kg/m2. We gathered data on informed consent, demographic characteristics, questionnaire responses, anthropometric and laboratory values. A Spearman correlation test was performed to determine the correlation. Results The mean levels of ferritin and sTfR were 10.2 ± 8.12 and 22.2 ± 7.96 ng/ml, respectively, and the mean sTfR/log ferritin ratio was 29.3 ± 17.65 nmol/L. The mean hepcidin levels were 9.0 ± 3.05 ng/ml. In total, 75.8% of subjects had low ferritin levels, high sTfR (51.5%) levels, and a high sTfR/log ferritin ratio (87.9%). The sTfR levels (r = −0.359; p = 0.003) and sTfR/log ferritin ratio (r = −0.375; p = 0.002) were negatively correlated with Hb levels. There was no correlation between the levels of hepcidin and Hb (r = −0.140; p = 0.264), but there was a positive correlation between ferritin and Hb levels (r = 0.350; p = 0.004). Conclusion This study showed a correlation between iron status and Hb levels in overweight and obese women of childbearing age. All the women had erythropoiesis with iron deficiency anaemia. We recommend that overweight and obese women undergo further iron parameters for the detection of early anaemia. In this group, the consumption of foods that enhance iron absorption, such as ascorbic acid, should be encouraged.
Collapse
|
36
|
Hernik A, Szczepanek-Parulska E, Filipowicz D, Abdolall A, Borowczyk M, Wrotkowska E, Czarnywojtek A, Krasiński Z, Ruchała M. The hepcidin concentration decreases in hypothyroid patients with Hashimoto's thyroiditis following restoration of euthyroidism. Sci Rep 2019; 9:16222. [PMID: 31700042 PMCID: PMC6838327 DOI: 10.1038/s41598-019-52715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to measure the hepcidin concentration and evaluate Fe homeostasis indices in a prospective study on patients with newly diagnosed hypothyroidism in the course of Hashimoto’s thyroiditis (HT) and following successful therapy. The prospective observational study consisted of 34 patients. The clinical evaluation and laboratory tests were performed at diagnosis (T0) and after restoration of euthyreosis 12 weeks later (T1). The median level of hepcidin was significantly lower (p = 0.002) after recovery (7.7 [6.2–13.0] ng/mL) than that before treatment (17.4 [7.6–20.4] ng/mL), while creatinine (p = 0.011) and GFR (p < 0.001) significantly improved after euthyroidism was achieved. A positive correlation was observed between hepcidin and fT3 (p = 0.033, r = 0.465) at T0. In the females, the level of hepcidin positively correlated with ferritin concentration before (p < 0.001, r = 0.928) and after treatment (p < 0.001, r = 0.835). A statistically significant difference was observed in RDW-CV (red blood cell distribution width - coefficient of variation) between the hypothyroid and euthyroid states. In conclusion, a decrease in hepcidin concentration during the transition from the hypothyroid state to euthyroidism in patients with HT is associated with the observed dynamics in iron homeostasis, mainly reflected by improvement in RDW-CV and significant correlations between ferritin and hepcidin as well as between hepcidin and fT3.
Collapse
Affiliation(s)
- Aleksandra Hernik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ali Abdolall
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Czarnywojtek
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
37
|
Iron considerations for the athlete: a narrative review. Eur J Appl Physiol 2019; 119:1463-1478. [PMID: 31055680 DOI: 10.1007/s00421-019-04157-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Iron plays a significant role in the body, and is specifically important to athletes, since it is a dominant feature in processes such as oxygen transport and energy metabolism. Despite its importance, athlete populations, especially females and endurance athletes, are commonly diagnosed with iron deficiency, suggesting an association between sport performance and iron regulation. Although iron deficiency is most common in female athletes (~ 15-35% athlete cohorts deficient), approximately 5-11% of male athlete cohorts also present with this issue. Furthermore, interest has grown in the mechanisms that influence iron absorption in athletes over the last decade, with the link between iron regulation and exercise becoming a research focus. Specifically, exercise-induced increases in the master iron regulatory hormone, hepcidin, has been highlighted as a contributing factor towards altered iron metabolism in athletes. To date, a plethora of research has been conducted, including investigation into the impact that sex hormones, diet (e.g. macronutrient manipulation), training and environmental stress (e.g. hypoxia due to altitude training) have on an athlete's iron status, with numerous recommendations proposed for consideration. This review summarises the current state of research with respect to the aforementioned factors, drawing conclusions and recommendations for future work.
Collapse
|
38
|
Vela D. Systemic and local hepcidin as emerging and important peptides in renal homeostasis and pathology. Biofactors 2019; 45:118-134. [PMID: 30461080 DOI: 10.1002/biof.1468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
Recent data suggest that the importance of hepcidin goes beyond its classical role in controlling systemic iron metabolism. Local hepcidins are emerging as important peptides for organ homeostasis in the brain, heart, blood vessels, and in cancer as well. Similarly, accumulating data indicate that hepcidin does seem to be an important factor in renal homeostasis. This review encompasses present knowledge concerning the role of hepcidin in renoprotection and its use as a biomarker of kidney diseases. Understanding the role of hepcidin in kidneys is important due to its relevance for kidney physiology and its potential therapeutic application in kidney pathologies. © 2018 BioFactors, 45(2):118-134, 2019.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| |
Collapse
|
39
|
Hepcidin and Iron Homeostasis in Patients with Subacute Thyroiditis and Healthy Subjects. Mediators Inflamm 2019; 2019:5764061. [PMID: 30936776 PMCID: PMC6415316 DOI: 10.1155/2019/5764061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose Hepcidin is an acute-phase protein involved also in regulation of iron homeostasis. The aim of the study was to prospectively assess for the first time the hepcidinEL concentration in patients with subacute thyroiditis (SAT), to identify biochemical determinants of hepcidinEL concentration and evaluate the potential role of hepcidin in SAT diagnosis and monitoring. Methods Out of 40 patients with SAT initially recruited, restrictive inclusion criteria fulfilled 21 subjects aged 45 ± 10 years and 21 healthy control subjects (CS). HepcidinEL concentration, thyroid status, and iron homeostasis were evaluated at SAT diagnosis and following therapy and compared with CS. Results The median hepcidinEL concentration at SAT diagnosis is higher than that in CS (48.8 (15.9-74.5) ng/mL vs. 18.2 (10.2-23.3) ng/mL, p = 0.009) and is significantly lower after treatment (4.0 (1.2-10.0) ng/mL, p = 0.007) compared with CS. The ROC analysis for hepcidinEL at SAT diagnosis revealed that area under the curve (AUC) is 0.735 (p = 0.009), and the cut-off for hepcidinEL concentration is 48.8 ng/mL (sensitivity 0.52 and specificity 0.95). HepcidinEL in SAT patients correlated with CRP (r = 0.614, p = 0.003), ferritin (r = 0.815, p < 0.001), and aTPO (r = -0.491, p = 0.024). On multiple regression, the correlation between hepcidinEL and ferritin was confirmed (p < 0.001). Conclusions SAT is accompanied by a significant increase in hepcidin, which reflects an acute-phase inflammatory process. Parameters of iron homeostasis improved significantly while inflammatory indices got lower following recovery. The potential role of hepcidin as a predictive factor of the risk of SAT relapse needs to be assessed in studies on larger groups of SAT patients.
Collapse
|
40
|
Abstract
Iron, an essential nutrient, is required for many biological processes but is also toxic in excess. The lack of a mechanism to excrete excess iron makes it crucial for the body to regulate the amount of iron absorbed from the diet. This regulation is mediated by the hepatic hormone hepcidin. Hepcidin also controls iron release from macrophages that recycle iron and from hepatocytes that store iron. Hepcidin binds to the only known iron export protein, ferroportin, inducing its internalization and degradation and thus limiting the amount of iron released into the plasma. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, hypoxia and erythropoiesis, and, to a lesser extent, testosterone. Dysregulation of hepcidin production contributes to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and non-transfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic inflammatory diseases and inherited iron-refractory iron-deficiency anemia. The present review summarizes our current understanding of the molecular mechanisms and signaling pathways contributing to hepcidin regulation by these factors and highlights the issues that still need clarification.
Collapse
Affiliation(s)
- Marie-Paule Roth
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Delphine Meynard
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hélène Coppin
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
41
|
Hepcidin Therapeutics. Pharmaceuticals (Basel) 2018; 11:ph11040127. [PMID: 30469435 PMCID: PMC6316648 DOI: 10.3390/ph11040127] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hepcidin is a key hormonal regulator of systemic iron homeostasis and its expression is induced by iron or inflammatory stimuli. Genetic defects in iron signaling to hepcidin lead to “hepcidinopathies” ranging from hereditary hemochromatosis to iron-refractory iron deficiency anemia, which are disorders caused by hepcidin deficiency or excess, respectively. Moreover, dysregulation of hepcidin is a pathogenic cofactor in iron-loading anemias with ineffective erythropoiesis and in anemia of inflammation. Experiments with preclinical animal models provided evidence that restoration of appropriate hepcidin levels can be used for the treatment of these conditions. This fueled the rapidly growing field of hepcidin therapeutics. Several hepcidin agonists and antagonists, as well as inducers and inhibitors of hepcidin expression have been identified to date. Some of them were further developed and are currently being evaluated in clinical trials. This review summarizes the state of the art.
Collapse
|
42
|
Petkus DL, Murray-Kolb LE, De Souza MJ. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med 2018; 47:1721-1737. [PMID: 28290159 DOI: 10.1007/s40279-017-0706-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the severity and prevalence of iron deficiency in exercising women, few published reports have explored how iron deficiency interacts with another prevalent and severe condition in exercising women: the 'female athlete triad.' This review aims to describe how iron deficiency may interact with each component of the female athlete triad, that is, energy status, reproductive function, and bone health. The effects of iron deficiency on energy status are discussed in regards to thyroid function, metabolic fuel availability, eating behaviors, and energy expenditure. The interactions between iron deficiency and reproductive function are explored by discussing the potentially impaired fertility and hyperprolactinemia due to iron deficiency and the alterations in iron metabolism due to menstrual blood loss and estrogen exposure. The interaction of iron deficiency with bone health may occur via dysregulation of the growth hormone/insulin-like growth factor-1 axis, hypoxia, and hypothyroidism. Based on these discussions, several future directions for research are presented.
Collapse
Affiliation(s)
- Dylan L Petkus
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Laura E Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
43
|
Vela D. Balance of cardiac and systemic hepcidin and its role in heart physiology and pathology. J Transl Med 2018; 98:315-326. [PMID: 29058707 DOI: 10.1038/labinvest.2017.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Hepcidin is the main regulator of iron metabolism in tissues. Its serum levels are mostly correlated with the levels of hepcidin expression from the liver, but local hepcidin can be important for the physiology of other organs as well. There is an increasing evidence that this is the case with cardiac hepcidin. This has been confirmed by studies with models of ischemic heart disease and other heart pathologies. In this review the discussion dissects the role of cardiac hepcidin in cellular homeostasis. This review is complemented with examination of the role of systemic hepcidin in heart disease and its use as a biochemical marker. The relationship between systemic vs local hepcidin in the heart is important because it can help us understand how the fine balance between the actions of two hepcidins affects heart function. Manipulating the axis systemic/cardiac hepcidin could serve as a new therapeutic strategy in heart diseases.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| |
Collapse
|
44
|
Vela D. Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med 2018; 16:25. [PMID: 29415739 PMCID: PMC5803919 DOI: 10.1186/s12967-018-1399-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
Hepcidin is emerging as a new important factor in brain iron homeostasis. Studies suggest that there are two sources of hepcidin in the brain; one is local and the other comes from the circulation. Little is known about the molecular mediators of local hepcidin expression, but inflammation and iron-load have been shown to induce hepcidin expression in the brain. The most important source of hepcidin in the brain are glial cells. Role of hepcidin in brain functions has been observed during neuronal iron-load and brain hemorrhage, where secretion of abundant hepcidin is related with the severity of brain damage. This damage can be reversed by blocking systemic and local hepcidin secretion. Studies have yet to unveil its role in other brain conditions, but the rationale exists, since these conditions are characterized by overexpression of the factors that stimulate brain hepcidin expression, such as inflammation, hypoxia and iron-overload.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n., 10000, Prishtina, Kosova.
| |
Collapse
|
45
|
Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med 2018; 50:e436. [PMID: 29391539 PMCID: PMC5903825 DOI: 10.1038/emm.2017.273] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepcidin is a crucial peptide for regulating cellular iron efflux. Because iron is essential for cell survival, especially for highly active cells, such as tumor cells, it is imperative to understand how tumor cells manipulate hepcidin expression for their own metabolic needs. Studies suggest that hepcidin expression and regulation in tumor cells show important differences in comparison with those in non-tumorous cells. These differences should be investigated to develop new strategies to fight cancer cells. Manipulating hepcidin expression to starve cancer cells for iron may prove to be a new therapy in the anticancer arsenal.
Collapse
|
46
|
Fischli S, von Wyl V, Trummler M, Konrad D, Wueest S, Ruefer A, Heering K, Streuli R, Steuer C, Bernasconi L, Recher M, Henzen C. Iron metabolism in patients with Graves' hyperthyroidism. Clin Endocrinol (Oxf) 2017; 87:609-616. [PMID: 28833367 DOI: 10.1111/cen.13450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/14/2017] [Accepted: 08/13/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Graves' hyperthyroidism (GH) interferes with iron metabolism and elevates ferritin. The precise mechanisms remain unclear. The influence of thyroid hormones on the synthesis/regulation of hepcidin, an important regulator of iron metabolism, remains uncharacterized. DESIGN Prospective observational study. PATIENTS We included patients (n = 31) with new-onset and untreated GH. MEASUREMENTS Laboratory parameters indicative of iron metabolism (ferritin, transferrin, hepcidin), inflammatory markers/cytokines and smoking status were assessed at the diagnosis of GH (T0) and at euthyroidism (T1) in the same patients using multivariable analyses. Hepcidin was measured by mass spectrometry (hepcidinMS ) and ELISA (hepcidinEL ). The impact of T3 on hepatic hepcidin expression was studied in a cell culture model using HepG2 cells. RESULTS Median ferritin levels were significantly lower and transferrin significantly higher at T1 than at T0. HepcidinMS levels were lower in males and females at T1 (statistically significant in males only). No statistically significant difference in hepcidinEL was detected between T0 and T1. Plasma levels of inflammatory markers (high-sensitive CRP, procalcitonin) and cytokines (interleukin 6, interleukin 1ß, tumour necrosis factor α) were not different between T0 and T1. Smokers tended to have lower fT3 and fT4 at T0 than nonsmoking GH patients. T3 significantly induced hepcidin mRNA expression in HepG2 cells. CONCLUSIONS Iron metabolism in patients with GH undergoes dynamic changes in patients with GH that resemble an acute-phase reaction. Inflammatory parameters and cytokines were unaffected by thyroid status. Gender and smoking status had an impact on ferritin, hepcidin and thyroid hormones.
Collapse
Affiliation(s)
- Stefan Fischli
- Division of Endocrinology and Diabetes, Luzerner Kantonsspital, Luzern, Switzerland
| | - Viktor von Wyl
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Michael Trummler
- Department of Clinical Chemistry, Luzerner Kantonsspital, Luzern, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Axel Ruefer
- Division of Hematology, Luzerner Kantonsspital, Luzern, Switzerland
| | - Kerstin Heering
- Division of Endocrinology and Diabetes, Luzerner Kantonsspital, Luzern, Switzerland
| | - Regina Streuli
- Division of Endocrinology and Diabetes, Luzerner Kantonsspital, Luzern, Switzerland
| | - Christian Steuer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Mike Recher
- Immunodeficiency Clinic, Medical Outpatient Clinic and Department of Biomedicine, University Hospital Basel and University Basel, Basel, Switzerland
| | - Christoph Henzen
- Division of Endocrinology and Diabetes, Luzerner Kantonsspital, Luzern, Switzerland
| |
Collapse
|
47
|
Eisenga MF, Dullaart RPF, Berger SP, Touw DJ, Bakker SJL, Gaillard CAJM. Urinary prednisolone excretion is a determinant of serum hepcidin levels in renal transplant recipients. Am J Hematol 2017; 92:E173-E175. [PMID: 28494514 PMCID: PMC5518224 DOI: 10.1002/ajh.24785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/05/2017] [Indexed: 12/03/2022]
Affiliation(s)
- Michele F. Eisenga
- Department of Nephrology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Robin P. F. Dullaart
- Department of Endocrinology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Stefan P. Berger
- Department of Nephrology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | | | - Carlo A. J. M. Gaillard
- Department of Nephrology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| |
Collapse
|
48
|
Sim M, Dawson B, Landers G, Swinkels DW, Wiegerinck E, Yeap BB, Trinder D, Peeling P. Interleukin-6 and Hepcidin Levels during Hormone-Deplete and Hormone-Replete Phases of an Oral Contraceptive Cycle: A Pilot Study. ANNALS OF NUTRITION AND METABOLISM 2017; 70:100-105. [DOI: 10.1159/000465530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
Abstract
Background: In the past, elevated estradiol levels were reported to downregulate the iron regulatory hormone hepcidin, thereby potentially improving iron metabolism. As estrogen plays a role in regulating the menstrual cycle and can influence the cytokine interleukin-6 (IL-6; a hepcidin up-regulator), this investigation examined the effects of estradiol supplementation achieved by the use of a monophasic oral contraceptive pill (OCP) on IL-6, hepcidin levels and iron status during the hormone-deplete versus hormone-replete phases within an oral contraceptive cycle (OCC). Methods: Fifteen healthy female OCP users were recruited and provided a venous blood sample on 2 separate mornings during a 28-day period. These included (a) days 2-4 of the OCC, representing a hormone-free withdrawal period (WD); (b) days 12-14 of the OCC, representing the end of the first week of active hormone therapy (AHT). Results: IL-6 and hepcidin levels were not significantly different at WD and AHT. Serum ferritin was significantly higher (p = 0.039) during AHT as compared to WD. Conclusions: Fluctuations in OCP hormones (estradiol and/or progestogen) had no effect on basal IL-6 and hepcidin levels in young women. Nevertheless, elevated ferritin levels recorded during AHT may indicate that OCP hormones can positively influence iron stores within an OCC despite unchanged hepcidin levels.
Collapse
|
49
|
Abstract
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
50
|
Boumaiza M, Carmona F, Poli M, Asperti M, Gianoncelli A, Bertuzzi M, Ruzzenenti P, Arosio P, Marzouki MN. Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains. Protein Eng Des Sel 2016; 30:77-84. [PMID: 27980120 DOI: 10.1093/protein/gzw066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5'end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli The recombinant fusion hepcidin-ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin-ferroportin interaction in cells and also as drug-delivery agent.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.) BP 676, Tunis Cedex 1080, Tunisie
| | - Fernando Carmona
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Bertuzzi
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Paola Ruzzenenti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Paolo Arosio
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.) BP 676, Tunis Cedex 1080, Tunisie
| |
Collapse
|