1
|
Rajput S, Nayar D. Effects of Polymer Architecture and Charged Molecular Crowders on Hydrophobic Polymer Collapse. ACS POLYMERS AU 2024; 4:289-301. [PMID: 39156561 PMCID: PMC11328333 DOI: 10.1021/acspolymersau.4c00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 08/20/2024]
Abstract
Accounting for the crowding effects inside a living cell is crucial to obtain a comprehensive view of the biomolecular processes and designing responsive polymer-based materials for biomedical applications. These effects have long been synonymous with the entropic volume exclusion effects. The role of soft, attractive intermolecular interactions remains elusive. Here, we investigate the effects of model cationic and anionic hydrophobic molecular crowders on the collapse equilibrium of uncharged model polymers using molecular dynamics simulations. Particularly, the effect of polymer architecture is explored where a 50-bead linear polymer model (Poly-I) and a branched polymer model (Poly-II) with nonpolar side chains are examined. The collapse of Poly-I is found to be highly favorable than in Poly-II in neat water. Addition of anionic crowders strengthens hydrophobic collapse in Poly-I, whereas collapse of Poly-II is only slightly favored over that in neat water. The thermodynamic driving forces are quite distinct in water. Collapse of Poly-I is driven by the favorable polymer-solvent entropy change (due to loss of waters to bulk on collapse), whereas collapse of Poly-II is driven by the favorable polymer-solvent energy change (due to favorable intrapolymer energy). The anionic crowders support the entropic mechanism for Poly-I by acting like surfactants, redirecting water dipoles toward themselves, and preferentially adsorbing on the Poly-I surface. In the case of Poly-II, the anionic crowders are loosely bound to polymer side chains, and loss of crowders and waters to the bulk on polymer collapse reduces the entropic penalty, thereby making collapse free energy slightly more favorable than in neat water. The results indicate the discriminating behavior of anionic crowders to strengthen the hydrophobic collapse. It is related to the structuring of water molecules around the termini and the central region of the two polymers. The results address the modulation of hydrophobic hydration by weakly hydrated ionic hydrophobes at crowded concentrations.
Collapse
Affiliation(s)
- Satyendra Rajput
- Department of Materials Science
and Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
| | - Divya Nayar
- Department of Materials Science
and Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Alfonso C, Sobrinos-Sanguino M, Luque-Ortega JR, Zorrilla S, Monterroso B, Nuero OM, Rivas G. Studying Macromolecular Interactions of Cellular Machines by the Combined Use of Analytical Ultracentrifugation, Light Scattering, and Fluorescence Spectroscopy Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:89-107. [PMID: 38507202 DOI: 10.1007/978-3-031-52193-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Carlos Alfonso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Marta Sobrinos-Sanguino
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Begoña Monterroso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Germán Rivas
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Kusova AM, Rakipov IT, Zuev YF. Effects of Homogeneous and Heterogeneous Crowding on Translational Diffusion of Rigid Bovine Serum Albumin and Disordered Alfa-Casein. Int J Mol Sci 2023; 24:11148. [PMID: 37446325 DOI: 10.3390/ijms241311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular environment includes proteins, sugars, and nucleic acids interacting in restricted media. In the cytoplasm, the excluded volume effect takes up to 40% of the volume available for occupation by macromolecules. In this work, we tested several approaches modeling crowded solutions for protein diffusion. We experimentally showed how the protein diffusion deviates from conventional Brownian motion in artificial conditions modeling the alteration of medium viscosity and rigid spatial obstacles. The studied tracer proteins were globular bovine serum albumin and intrinsically disordered α-casein. Using the pulsed field gradient NMR, we investigated the translational diffusion of protein probes of different structures in homogeneous (glycerol) and heterogeneous (PEG 300/PEG 6000/PEG 40,000) solutions as a function of crowder concentration. Our results showed fundamentally different effects of homogeneous and heterogeneous crowded environments on protein self-diffusion. In addition, the applied "tracer on lattice" model showed that smaller crowding obstacles (PEG 300 and PEG 6000) create a dense net of restrictions noticeably hindering diffusing protein probes, whereas the large-sized PEG 40,000 creates a "less restricted" environment for the diffusive motion of protein molecules.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
| | - Ilnaz T Rakipov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
5
|
Rivas G, Minton A. Influence of Nonspecific Interactions on Protein Associations: Implications for Biochemistry In Vivo. Annu Rev Biochem 2022; 91:321-351. [PMID: 35287477 DOI: 10.1146/annurev-biochem-040320-104151] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain;
| | - Allen Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
6
|
Gupta M, Chowdhury PK. Protein dynamics as a sensor for macromolecular crowding: Insights into mixed crowding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kim R, Radhakrishnan ML. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models. J Chem Phys 2021; 154:225101. [PMID: 34241219 DOI: 10.1063/5.0042082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crowded cellular environment can affect biomolecular binding energetics, with specific effects depending on the properties of the binding partners and the local environment. Often, crowding effects on binding are studied on particular complexes, which provide system-specific insights but may not provide comprehensive trends or a generalized framework to better understand how crowding affects energetics involved in molecular recognition. Here, we use theoretical, idealized molecules whose physical properties can be systematically varied along with samplings of crowder placements to understand how electrostatic binding energetics are altered through crowding and how these effects depend on the charge distribution, shape, and size of the binding partners or crowders. We focus on electrostatic binding energetics using a continuum electrostatic framework to understand effects due to depletion of a polar, aqueous solvent in a crowded environment. We find that crowding effects can depend predictably on a system's charge distribution, with coupling between the crowder size and the geometry of the partners' binding interface in determining crowder effects. We also explore the effect of crowder charge on binding interactions as a function of the monopoles of the system components. Finally, we find that modeling crowding via a lowered solvent dielectric constant cannot account for certain electrostatic crowding effects due to the finite size, shape, or placement of system components. This study, which comprehensively examines solvent depletion effects due to crowding, complements work focusing on other crowding aspects to help build a holistic understanding of environmental impacts on molecular recognition.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | |
Collapse
|
8
|
Modeling protein association from homogeneous to mixed environments: A reaction-diffusion dynamics approach. J Mol Graph Model 2021; 107:107936. [PMID: 34139641 DOI: 10.1016/j.jmgm.2021.107936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Protein-protein association in vivo occur in a crowded and complex environment. Theoretical models based on hard-core repulsion predict stabilization of the product under crowded conditions. Soft interactions, on the contrary, can either stabilize or destabilize the product formation. Here we modeled protein association in presence of crowders of varying size, shape, interaction potential and used different mixing parameters for constituent crowders to study the influence on the association reaction. It was found that size is a more dominant factor in crowder-induced stabilization than the shape. Furthermore, in a mixture of crowders having different sizes but identical interaction potential, the change of free energy is additive of the free energy changes produced by individual crowders. However, the free energy change is not additive if two crowders of same size interact via different interaction potentials. These findings provide a systematic understanding of crowding influences in heterogeneous medium.
Collapse
|
9
|
Robles-Ramos MÁ, Zorrilla S, Alfonso C, Margolin W, Rivas G, Monterroso B. Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118986. [PMID: 33581219 PMCID: PMC8529516 DOI: 10.1016/j.bbamcr.2021.118986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes, including cell division. Previous work revealed that FtsZ, a protein essential for cytokinesis in most bacteria, forms biomolecular condensates with SlmA, a protein that protects the chromosome from damage inflicted by the division machinery in Escherichia coli. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion by SlmA or to bacteria containing this protein. Here we report that FtsZ alone, under physiologically relevant conditions, can demix into condensates in bulk and when encapsulated in synthetic cell-like systems generated by microfluidics. Condensate assembly depends on FtsZ being in the GDP-bound state and on conditions mimicking the crowded environment of the cytoplasm that promote its oligomerization. Condensates are dynamic and reversibly convert into filaments upon GTP addition. Notably, FtsZ lacking its C-terminal disordered region, a structural element likely to favor biomolecular condensation, also forms condensates, albeit less efficiently. The inherent tendency of FtsZ to form condensates susceptible to modulation by physiological factors, including binding partners, suggests that such mechanisms may play a more general role in bacterial division than initially envisioned.
Collapse
Affiliation(s)
- Miguel Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
10
|
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030254. [PMID: 33806332 PMCID: PMC7999717 DOI: 10.3390/antibiotics10030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a “divisome”, FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ’s ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound’s potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Miguel-Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| |
Collapse
|
11
|
Abstract
Successful bacterial proliferation relies on the spatial and temporal precision of cytokinesis and its regulation by systems that protect the integrity of the nucleoid. In Escherichia coli, one of these protectors is SlmA protein, which binds to specific DNA sites around the nucleoid and helps to shield the nucleoid from inappropriate bisection by the cell division septum. Here, we discovered that SlmA not only interacts with the nucleoid and septum-associated cell division proteins but also binds directly to cytomimetic lipid membranes, adding a novel putative mechanism for regulating the local activity of these cell division proteins. We find that interaction between SlmA and lipid membranes is regulated by SlmA’s DNA binding sites and protein binding partners as well as chemical conditions, suggesting that the SlmA-membrane interactions are important for fine-tuning the regulation of nucleoid integrity during cytokinesis. Protection of the chromosome from scission by the division machinery during cytokinesis is critical for bacterial survival and fitness. This is achieved by nucleoid occlusion, which, in conjunction with other mechanisms, ensures formation of the division ring at midcell. In Escherichia coli, this mechanism is mediated by SlmA, a specific DNA binding protein that antagonizes assembly of the central division protein FtsZ into a productive ring in the vicinity of the chromosome. Here, we provide evidence supporting direct interaction of SlmA with lipid membranes, tuned by its binding partners FtsZ and SlmA binding sites (SBS) on chromosomal DNA. Reconstructions in minimal membrane systems that mimic cellular environments show that SlmA binds to lipid-coated microbeads or locates at the edge of microfluidic-generated microdroplets, inside which the protein is encapsulated. DNA fragments containing SBS sequences do not seem to be recruited to the membrane by SlmA but instead compete with SlmA’s ability to bind lipids. The interaction of SlmA with FtsZ modulates this behavior, ultimately triggering membrane localization of the SBS sequences alongside the two proteins. The ability of SlmA to bind lipids uncovered in this work extends the interaction network of this multivalent regulator beyond its well-known protein and nucleic acid recognition, which may have implications in the overall spatiotemporal control of division ring assembly.
Collapse
|
12
|
Monterroso B, Robles-Ramos MÁ, Zorrilla S, Rivas G. Reconstituting bacterial cell division assemblies in crowded, phase-separated media. Methods Enzymol 2020; 646:19-49. [PMID: 33453926 DOI: 10.1016/bs.mie.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we have summarized several strategies to reconstruct complexes containing the FtsZ protein, a central element of the cell division machinery in most bacteria, and to test their functional organization in minimal membrane systems and cell-like containers, as vesicles and droplets produced by microfluidics. These synthetic systems have been devised to mimic elements of the intracellular complexity, as excluded volume effects due to natural crowding, and macromolecular condensation resulting from biologically regulated liquid-liquid phase separation, in media of known and controllable composition. This integrative approach has allowed to demonstrate that macromolecular phase separation and crowding may also help to dynamically organize FtsZ in the intracellular space thus modulating its functional reactivity in cell division.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Miguel Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Hämisch B, Pollak R, Ebbinghaus S, Huber K. Self-Assembly of Pseudo-Isocyanine Chloride as a Sensor for Macromolecular Crowding In Vitro and In Vivo. Chemistry 2020; 26:7041-7050. [PMID: 32154954 PMCID: PMC7317963 DOI: 10.1002/chem.202000113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Indexed: 11/21/2022]
Abstract
Pseudo‐isocyanine chloride (PIC) is a cationic dyestuff that exhibits self‐assembly in aqueous solution, promoted either by increasing the PIC concentration or by decreasing the temperature. PIC‐aggregates exhibit a characteristic and sharp absorption band as well as a fluorescence band at a wavelength of 573 nm making PIC an interesting candidate to analyze the self‐assembly process in various environments. The present work developed PIC‐based, synthetic model systems, suitable to investigate how macromolecular crowding influences self‐assembly processes. Four synthetic additives were used as potential crowders: Triethylene glycol (TEG), polyethylene glycol (PEG), Ficoll 400 as a highly branched polysaccharide, and sucrose corresponding to the monomeric unit of Ficoll. Combined UV/Vis spectroscopy and time‐resolved light scattering revealed a strong impact of crowding based on excluded volume effects only for Ficoll 400. Sucrose had hardly any influence on the self‐assembly of PIC and PEG and TEG impeded the PIC self‐assembly. Development of such a PIC based model system led over to in‐cell experiments. HeLa cells were infiltrated with PIC solutions well below the aggregation threshold in the infiltrating solution. In the cellular environment, PIC was exposed to a significant crowding and immediately started to aggregate. As was demonstrated by fluorescence imaging, the extent of aggregation can be modulated by exposing the cells to salt‐induced osmotic stress. The results suggest future use of such a system as a sensor for the analysis of in vitro and in vivo crowding effects on self‐assembly processes.
Collapse
Affiliation(s)
- Benjamin Hämisch
- Physical Chemistry, Paderborn University, 33098, Paderborn, Germany
| | - Roland Pollak
- Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Simon Ebbinghaus
- Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Klaus Huber
- Physical Chemistry, Paderborn University, 33098, Paderborn, Germany
| |
Collapse
|
14
|
|
15
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MA, López-Álvarez M, Margolin W, Keating CD, Rivas G. Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. EMBO Rep 2018; 20:embr.201845946. [PMID: 30523075 DOI: 10.15252/embr.201845946] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022] Open
Abstract
Macromolecular condensation resulting from biologically regulated liquid-liquid phase separation is emerging as a mechanism to organize intracellular space in eukaryotes, with broad implications for cell physiology and pathology. Despite their small size, bacterial cells are also organized by proteins such as FtsZ, a tubulin homolog that assembles into a ring structure precisely at the cell midpoint and is required for cytokinesis. Here, we demonstrate that FtsZ can form crowding-induced condensates, reminiscent of those observed for eukaryotic proteins. Formation of these FtsZ-rich droplets occurs when FtsZ is bound to SlmA, a spatial regulator of FtsZ that antagonizes polymerization, while also binding to specific sites on chromosomal DNA. The resulting condensates are dynamic, allowing FtsZ to undergo GTP-driven assembly to form protein fibers. They are sensitive to compartmentalization and to the presence of a membrane boundary in cell mimetic systems. This is a novel example of a bacterial nucleoprotein complex exhibiting condensation into liquid droplets, suggesting that phase separation may also play a functional role in the spatiotemporal organization of essential bacterial processes.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel A Robles-Ramos
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Marina López-Álvarez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Sobrinos-Sanguino M, Zorrilla S, Keating CD, Monterroso B, Rivas G. Encapsulation of a compartmentalized cytoplasm mimic within a lipid membrane by microfluidics. Chem Commun (Camb) 2017; 53:4775-4778. [DOI: 10.1039/c7cc01289f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microdroplets in microfluidics and permeable GUVs encapsulating LLPS-systems provide improved platforms for analysing the impact of compartmentalization on biological processes.
Collapse
Affiliation(s)
- Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas
- Consejo Superior de Investigaciones Científicas (CSIC)
- Madrid
- Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas
- Consejo Superior de Investigaciones Científicas (CSIC)
- Madrid
- Spain
| | | | - Begoña Monterroso
- Centro de Investigaciones Biológicas
- Consejo Superior de Investigaciones Científicas (CSIC)
- Madrid
- Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas
- Consejo Superior de Investigaciones Científicas (CSIC)
- Madrid
- Spain
| |
Collapse
|
18
|
Hoppe T, Minton AP. Incorporation of Hard and Soft Protein-Protein Interactions into Models for Crowding Effects in Binary and Ternary Protein Mixtures. Comparison of Approximate Analytical Solutions with Numerical Simulation. J Phys Chem B 2016; 120:11866-11872. [PMID: 27779417 DOI: 10.1021/acs.jpcb.6b07736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to better understand how nonspecific interactions between solutes can modulate specific biochemical reactions taking place in complex media, we introduce a simplified model aimed at elucidating general principles. In this model, solutions containing two or three species of interacting globular proteins are modeled as a fluid of spherical particles interacting through square well potentials that qualitatively capture both steric hard core repulsion and longer-ranged attraction or repulsion. The excess chemical potential, or free energy of solvation, of each particle species is calculated as a function of species concentrations, particle radii, and square well interaction range and depth. The results of analytical models incorporating two-body and three-body interactions are compared with the estimates of free energy obtained via Widom insertion into simulated equilibrium square-well fluids. The analytical models agree well with results of numeric simulations carried out for a variety of model parameters and fluid compositions up to a total particle volume fraction of ca. 0.2.
Collapse
Affiliation(s)
- Travis Hoppe
- Laboratory of Chemical Physics and ‡Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Public Health Service , Bethesda, Maryland 20892, United States
| | - Allen P Minton
- Laboratory of Chemical Physics and ‡Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Public Health Service , Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Keating CD, Rivas G. Microenvironments created by liquid-liquid phase transition control the dynamic distribution of bacterial division FtsZ protein. Sci Rep 2016; 6:35140. [PMID: 27725777 PMCID: PMC5057132 DOI: 10.1038/srep35140] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
The influence of membrane-free microcompartments resulting from crowding-induced liquid/liquid phase separation (LLPS) on the dynamic spatial organization of FtsZ, the main component of the bacterial division machinery, has been studied using several LLPS systems. The GTP-dependent assembly cycle of FtsZ is thought to be crucial for the formation of the septal ring, which is highly regulated in time and space. We found that FtsZ accumulates in one of the phases and/or at the interface, depending on the system composition and on the oligomerization state of the protein. These results were observed both in bulk LLPS and in lipid-stabilized, phase-separated aqueous microdroplets. The visualization of the droplets revealed that both the location and structural arrangement of FtsZ filaments is determined by the nature of the LLPS. Relocation upon depolymerization of the dynamic filaments suggests the protein may shift among microenvironments in response to changes in its association state. The existence of these dynamic compartments driven by phase transitions can alter the local composition and reactivity of FtsZ during its life cycle acting as a nonspecific modulating factor of cell function.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| |
Collapse
|
20
|
Rivas G, Minton AP. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem Sci 2016; 41:970-981. [PMID: 27669651 DOI: 10.1016/j.tibs.2016.08.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Biochemical processes take place in heterogeneous and highly volume-occupied or crowded environments that can considerably influence the reactivity and distribution of participating macromolecules. We summarize here the thermodynamic consequences of excluded-volume and long-range nonspecific intermolecular interactions for macromolecular reactions in volume-occupied media. In addition, we summarize and compare the information content of studies of crowding in vitro and in vivo. We emphasize the importance of characterizing the behavior not only of labeled tracer macromolecules but also the composition and behavior of unlabeled macromolecules in the immediate vicinity of the tracer. Finally, we propose strategies for extending quantitative analyses of crowding in simple model systems to increasingly complex media up to and including intact cells.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Characterization of the in vitro assembly of FtsZ in Arthrobacter strain A3 using light scattering. Int J Biol Macromol 2016; 91:294-8. [PMID: 27164494 DOI: 10.1016/j.ijbiomac.2016.04.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
The self-assembly of FtsZ, the bacterial homolog of tubulin, plays an essential role in cell division. Light scattering technique is applied to real-time monitor the in vitro assembly of FtsZ in Arthrobacter strain A3, a newly isolated psychrotrophic bacterium. The critical concentration needed for the assembly is estimated as 6.7μM. The polymerization of FtsZ in Arthrobacter strain A3 requires both GTP and divalent metal ions, while salt is an unfavorable condition for the assembly. The FtsZ polymerizes under a wide range of pHs, with the fastest rate around pH 6.0. The FtsZ from Arthrobacter strain A3 resembles Mycobacterium tuberculosis FtsZ in terms of the dependence on divalent metal ions and the slow polymerization rate, while it is different from M. tuberculosis FtsZ considering the sensitivity to salt and pH. The comparison of FtsZ from different organisms will greatly advance our understanding of the biological role of the key cell division protein.
Collapse
|