1
|
Song Y, Li Y, Lu L, Yang C, Lu J. Case Report: Nephrotic syndrome as the primary manifestation of Alport syndrome in a Chinese pediatric patient. Front Pediatr 2025; 12:1518553. [PMID: 39845453 PMCID: PMC11750847 DOI: 10.3389/fped.2024.1518553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Alport syndrome (AS) is a genetically heterogeneous disorder resulting from variants in genes coding for the alpha-3/4/5 chains of Collagen IV, leading to defective basement membranes in the kidney, cochlea, and eye. The clinical manifestations of AS vary in patients. Cases of childhood AS caused by COL4A3 presenting primarily with nephrotic syndrome (NS) are rarely reported. Here, we report a pediatric case presenting initially with NS attributed to AS caused by COL4A3. Case presentation An 11-year-old boy presented with hematuria and nephrotic range proteinuria. After excluding secondary causes, primary NS was considered. He was administered with prednisone (60 mg/day). The patient had not responded to treatment by the end of 4 weeks, so he was diagnosed with steroid-resistant NS. A renal biopsy showed granular and vacuolar degeneration of renal tubular epithelial cells, multifocal foam cell infiltration in the renal interstitium, and immunofluorescence indicated the absence of α3, α4, and α5 expression in the glomerular and tubular basement membrane, while Bowman's capsule expression was normal. Electron microscopy ultrastructural suggested variable basement membrane thickness, and partial tearing and web-like structures. Genetic testing revealed a heterozygous COL4A3 missense mutation c.3210 (exon 37)G>A(NM:000091). These findings are consistent with the diagnosis of AS. Prednisone was gradually tapered and enalapril maleate was initiated. Conclusion We have described a pediatric case of AS featuring NS as its primary manifestation. It is important to consider AS to be a diagnosis or differential diagnosis in patients who have NS with hematuria or steroid resistance.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, The FirstAffiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liqun Lu
- Department of Pediatrics, The FirstAffiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Changqiang Yang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jing Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yanus GA, Suspitsin EN, Imyanitov EN. The Spectrum of Disease-Associated Alleles in Countries with a Predominantly Slavic Population. Int J Mol Sci 2024; 25:9335. [PMID: 39273284 PMCID: PMC11394759 DOI: 10.3390/ijms25179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
There are more than 260 million people of Slavic descent worldwide, who reside mainly in Eastern Europe but also represent a noticeable share of the population in the USA and Canada. Slavic populations, particularly Eastern Slavs and some Western Slavs, demonstrate a surprisingly high degree of genetic homogeneity, and, consequently, remarkable contribution of recurrent alleles associated with hereditary diseases. Along with pan-European pathogenic variants with clearly elevated occurrence in Slavic people (e.g., ATP7B c.3207C>A and PAH c.1222C>T), there are at least 52 pan-Slavic germ-line mutations (e.g., NBN c.657_661del and BRCA1 c.5266dupC) as well as several disease-predisposing alleles characteristic of the particular Slavic communities (e.g., Polish SDHD c.33C>A and Russian ARSB c.1562G>A variants). From a clinical standpoint, Slavs have some features of a huge founder population, thus providing a unique opportunity for efficient genetic studies.
Collapse
Affiliation(s)
- Grigoriy A Yanus
- Laboratory of Molecular Diagnostics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N Suspitsin
- Department of Medical Genetics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Medical Genetics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| |
Collapse
|
3
|
Latta K, Boeckhaus J, Weinreich I, Borisch A, Müller D, Gross O. Clinical Practice Guideline: Microhematuria in Children and Young Adults. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:461-466. [PMID: 38775222 PMCID: PMC11635810 DOI: 10.3238/arztebl.m2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Occult blood in the urine, or microhematuria, is a common finding (about 10%) in children and young adults. It is often of brief duration and therefore harmless. In persistent microhematuria, acanthocytes in the urine are a frequently unrecognized early marker of glomerular kidney disease. The purpose of this guideline is to promote the early detection of kidney disease in children and young adults with practical, evidence-based recommendations. METHODS A systematic search for pertinent publications up to January 2023 was conducted in Pubmed, the Cochrane Database, and Livivo. 474 publications were retrieved, summarized in terms of method and content, and classified by Oxford (2011) evidence level. RESULTS Approximately 1% of children and young adults have undiagnosed chronic kidney disease. Microhematuria is an early warning sign. A timely nephrological evaluation is indicated if microhematuria persists for 3 to 6 months, if ≥ 5% acanthocytes are detectable in the urine, and if there is also proteinuria, hypertension, or impaired renal function. Ultrasonography of the kidneys and urinary tract is the imaging method of choice; cystoscopy should be avoided. For patients with glomerular microhematuria, molecular genetic testing is recommended. Renal biopsy is recommended in case of florid glomerular diseases, after the determination of various laboratory param eters and clinical findings, including molecular genet ic testing especially in children. CONCLUSION In the absence of a guideline until now, findings have often been incorrectly assessed, leading either to an inadequate work-up or to excessive diagnostics. As a result, in approximately 30% of young patients, valuable opportunities for early treatment to protect the kidneys have been missed.
Collapse
Affiliation(s)
- Kay Latta
- Responsible scientific societies: German Society for Pediatric Nephrology GPN, Berlin, and German Society for Nephrology DGfN, Berlin
- Clementine Pediatric Hospital, Frankfurt
| | - Jan Boeckhaus
- Responsible scientific societies: German Society for Pediatric Nephrology GPN, Berlin, and German Society for Nephrology DGfN, Berlin
- Department of Nephrology and Rheumatology, University Medical Center Göttingen
| | - Ina Weinreich
- Responsible scientific societies: German Society for Pediatric Nephrology GPN, Berlin, and German Society for Nephrology DGfN, Berlin
- Department of Nephrology and Rheumatology, University Medical Center Göttingen
| | - Angela Borisch
- Responsible scientific societies: German Society for Pediatric Nephrology GPN, Berlin, and German Society for Nephrology DGfN, Berlin
- Department of Nephrology and Rheumatology, University Medical Center Göttingen
| | - Dominik Müller
- Responsible scientific societies: German Society for Pediatric Nephrology GPN, Berlin, and German Society for Nephrology DGfN, Berlin
| | - Oliver Gross
- Responsible scientific societies: German Society for Pediatric Nephrology GPN, Berlin, and German Society for Nephrology DGfN, Berlin
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité – Berlin University of Medicine, Berlin
- Department of Nephrology and Rheumatology, University Medical Center Göttingen
| |
Collapse
|
4
|
Ammarellou A. Pungency related gene network in Allium sativum L., response to sulfur treatments. BMC Genom Data 2024; 25:35. [PMID: 38532320 DOI: 10.1186/s12863-024-01206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Pungency of garlic (Allium sativum L.) is generated from breakdown of the alk(en)yl cysteine sulphoxide (CSO), alliin and its subsequent breakdown to allicin under the activity of alliinase (All). Based on recent evidence, two other important genes including Sulfite reductase (SiR) and Superoxide dismutase (SOD) are thought to be related to sulfur metabolism. These three gene functions are in sulfate assimilation pathway. However, whether it is involved in stress response in crops is largely unknown. In this research, the order and priority of simultaneous expression of three genes including All, SiR and SOD were measured on some garlic ecotypes of Iran, collected from Zanjan, Hamedan and Gilan, provinces under sulfur concentrations (0, 6, 12, 24 and 60 g/ per experimental unit: pot) using real-time quantitative PCR (RT-qPCR) analysis. For understanding the network interactions between studied genes and other related genes, in silico gene network analysis was constructed to investigate various mechanisms underlying stimulation of A. sativum L. to cope with imposed sulfur. Complicated network including TF-TF, miRNA-TF, and miRNA-TF-gene, was split into sub-networks to have a deeper insight. Analysis of q-RT-PCR data revealed the highest expression in All and SiR genes respectively. To distinguish and select significant pathways in sulfur metabolism, RESNET Plant database of Pathway Studio software v.10 (Elsevier), and other relative data such as chemical reactions, TFs, miRNAs, enzymes, and small molecules were extracted. Complex sub-network exhibited plenty of routes between stress response and sulfate assimilation pathway. Even though Alliinase did not display any connectivity with other stress response genes, it showed binding relation with lectin functional class, as a result of which connected to leucine zipper, exocellulase, peroxidase and ARF functional class indirectly. Integration network of these genes revealed their involvement in various biological processes such as, RNA splicing, stress response, gene silencing by miRNAs, and epigenetic. The findings of this research can be used to extend further research on the garlic metabolic engineering, garlic stress related genes, and also reducing or enhancing the activity of the responsible genes for garlic pungency for health benefits and industry demands.
Collapse
Affiliation(s)
- Ali Ammarellou
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
5
|
García-Aznar JM, De la Higuera L, Besada Cerecedo L, Gandiaga NP, Vega AI, Fernández-Fresnedo G, González-Lamuño D. New Insights into Renal Failure in a Cohort of 317 Patients with Autosomal Dominant Forms of Alport Syndrome: Report of Two Novel Heterozygous Mutations in COL4A3. J Clin Med 2022; 11:jcm11164883. [PMID: 36013122 PMCID: PMC9409901 DOI: 10.3390/jcm11164883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Alport syndrome (AS) is a clinically and genetically heterogeneous disorder with a wide phenotypic spectrum, onset, and progression. X-linked AS (XLAS) and autosomal recessive AS (ARAS) are severe conditions, whereas the severity of autosomal dominant AS (ADAS) may vary from benign familial hematuria to progressive renal disease with extra-renal manifestations. In this study, we collated information from the literature and analyzed a cohort of 317 patients with ADAS carrying heterozygous disease-causing mutations in COL4A3/4 including four patients from two unrelated families who carried two novel variants in COL4A3. Regarding the age of onset of the disease, 80% of patients presented urinalysis alterations (microhematuria, hematuria, and/or proteinuria) before the age of 40 years. The cumulative probability of suffering adverse renal events was mainly observed between 30 and 70 years, without statistical differences between COL4A3 and COL4A4. We observed statistically significant differences between the sexes in the age of developing ESKD in cases affected by mutations in COL4A3/4 (p value = 0.0097), suggesting that males begin experiencing earlier deterioration of renal function than women. This study supports the importance of follow-up in young patients who harbor pathogenic mutations in COL4A3/4. We update the knowledge of ADAS, highlighting differences in the progression of the disease between males and females.
Collapse
Affiliation(s)
| | | | | | - Nerea Paz Gandiaga
- Servicio de Genética, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Ana Isabel Vega
- Servicio de Genética, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Gema Fernández-Fresnedo
- Servicio de Nefrología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | | |
Collapse
|
6
|
Deng H, Zhang Y, Ding J, Wang F. Presumed COL4A3/COL4A4 Missense/Synonymous Variants Induce Aberrant Splicing. Front Med (Lausanne) 2022; 9:838983. [PMID: 35386907 PMCID: PMC8977549 DOI: 10.3389/fmed.2022.838983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
Background The incorrect interpretation of missense and synonymous variants can lead to improper molecular diagnosis and subsequent faulty genetic counselling. The aim of this study was to evaluate the pathogenicity of presumed COL4A3/COL4A4 missense and synonymous variants detected by next-generation sequencing to provide evidence for diagnosis and genetic counselling. Methods Patients' clinical findings and genetic data were analysed retrospectively. An in vitro minigene assay was conducted to assess the effect of presumed COL4A3/COL4A4 missense and synonymous variants on RNA splicing. Results Five unclassified COL4A3/COL4A4 variants, which were detected in five of 343 patients with hereditary kidney diseases, were analysed. All of them were predicted to affect splicing by Human Splicing Finder. The presumed COL4A3 missense variant c.4793T > G [p. (Leu1598Arg)] resulted in a loss of alternative full-length transcript during the splicing process. The COL4A3 transcript carried synonymous variant c.765G > A [p. (Thr255Thr)], led to an in-frame deletion of exon 13. Nevertheless, variants c.3566G > A [p. (Gly1189Glu)] in COL4A3 and c.3990G > A [p. (Pro1330Pro)], c.4766C > T [p. (Pro1589Leu)] in COL4A4 exhibited no deleterious effect on splicing. Among the five patients harbouring the abovementioned COL4A3/COL4A4 variants, three patients were genetically diagnosed with autosomal recessive Alport syndrome, one patient was highly suspected of having thin basement membrane nephropathy, and the other patient was clinically diagnosed with Alport syndrome. Conclusions COL4A3 presumed missense variant p. (Leu1598Arg) and synonymous variant p. (Thr255Thr) affect RNA splicing, which highlights the prime importance of transcript analysis of unclassified exonic sequence variants for better molecular diagnosis and genetic counselling. Meanwhile, the reliability of splicing predictions by predictive tools for exonic substitutions needs to be improved.
Collapse
Affiliation(s)
- Haiyue Deng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Mutations in Collagen Genes in the Context of an Isolated Population. Genes (Basel) 2020; 11:genes11111377. [PMID: 33233744 PMCID: PMC7699876 DOI: 10.3390/genes11111377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023] Open
Abstract
Genetic studies of population isolates have great potential to provide a unique insight into genetic differentiation and phenotypic expressions. Galičnik village is a population isolate located in the northwest region of the Republic of North Macedonia, established around the 10th century. Alport syndrome-linked nephropathy with a complex inheritance pattern has been described historically among individuals in the village. In order to determine the genetic basis of the nephropathies and to characterize the genetic structure of the population, 23 samples were genotyped using a custom-made next generation sequencing panel and 111 samples using population genetic markers. We compared the newly obtained population data with fifteen European population data sets. NGS analysis revealed four different mutations in three different collagen genes in twelve individuals within the Galičnik population. The genetic isolation and small effective population size of Galičnik village have resulted in a high level of genomic homogeneity, with domination of R1a-M458 and R1b-U106* haplogroups. The study explains complex autosomal in cis digenic and X-linked inheritance patterns of nephropathy in the isolated population of Galičnik and describes the first case of Alport syndrome family with three different collagen gene mutations.
Collapse
|
8
|
Yamamura T, Nozu K, Minamikawa S, Horinouchi T, Sakakibara N, Nagano C, Aoto Y, Ishiko S, Nakanishi K, Shima Y, Nagase H, Rossanti R, Ye MJ, Nozu Y, Ishimori S, Morisada N, Kaito H, Iijima K. Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome. Mol Genet Genomic Med 2019; 7:e883. [PMID: 31364286 PMCID: PMC6732293 DOI: 10.1002/mgg3.883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Alport syndrome (AS) is a hereditary disease caused by mutations in COL4A3‐5 genes. Recently, comprehensive genetic analysis has become the first‐line diagnostic tool for AS. However, no reports comparing mutation identification rates between conventional sequencing and comprehensive screening have been published. Methods In this study, 441 patients clinically suspected of having AS were divided into two groups and compared. The initial mutational analysis method involved targeted exome sequencing using next‐generation sequencing (NGS) (n = 147, NGS group) or Sanger sequencing for COL4A3/COL4A4/COL4A5 (n = 294, Sanger group). Results In the NGS group, 126 patients (86%) were diagnosed with AS by NGS, while two had pathogenic mutations in other genes, NPHS1 and EYA1. Further, 239 patients (81%) were diagnosed with AS by initial analysis in the Sanger group. Thirteen patients who were negative for mutation detection in the Sanger group were analyzed by NGS; three were diagnosed with AS. Two had mutations in CLCN5 or LAMB2. The final variant detection rate was 90%. Discussion Our results reveal that Sanger sequencing and targeted exome sequencing have high diagnostic ability. NGS also has the advantage of detecting other inherited kidney diseases and pathogenic mutations missed by Sanger sequencing.
Collapse
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ming J Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshimi Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Savige J, Ariani F, Mari F, Bruttini M, Renieri A, Gross O, Deltas C, Flinter F, Ding J, Gale DP, Nagel M, Yau M, Shagam L, Torra R, Ars E, Hoefele J, Garosi G, Storey H. Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatr Nephrol 2019; 34:1175-1189. [PMID: 29987460 DOI: 10.1007/s00467-018-3985-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/22/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Recent expert guidelines recommend genetic testing for the diagnosis of Alport syndrome. Here, we describe current best practice and likely future developments. In individuals with suspected Alport syndrome, all three COL4A5, COL4A3 and COL4A4 genes should be examined for pathogenic variants, probably by high throughput-targeted next generation sequencing (NGS) technologies, with a customised panel for simultaneous testing of the three Alport genes. These techniques identify up to 95% of pathogenic COL4A variants. Where causative pathogenic variants cannot be demonstrated, the DNA should be examined for deletions or insertions by re-examining the NGS sequencing data or with multiplex ligation-dependent probe amplification (MLPA). These techniques identify a further 5% of variants, and the remaining few changes include deep intronic splicing variants or cases of somatic mosaicism. Where no pathogenic variants are found, the basis for the clinical diagnosis should be reviewed. Genes in which mutations produce similar clinical features to Alport syndrome (resulting in focal and segmental glomerulosclerosis, complement pathway disorders, MYH9-related disorders, etc.) should be examined. NGS approaches have identified novel combinations of pathogenic variants in Alport syndrome. Two variants, with one in COL4A3 and another in COL4A4, produce a more severe phenotype than an uncomplicated heterozygous change. NGS may also identify further coincidental pathogenic variants in genes for podocyte-expressed proteins that also modify the phenotype. Our understanding of the genetics of Alport syndrome is evolving rapidly, and both genetic and non-genetic factors are likely to contribute to the observed phenotypic variability.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine, Melbourne and Northern Health, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | | | | | | | | | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University of Gottingen, Gottingen, Germany
| | | | - Frances Flinter
- Department of Clinical Genetics, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Jie Ding
- Peking University First Hospital, Beijing, China
| | - Daniel P Gale
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Mato Nagel
- Centre for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | - Michael Yau
- Genetics, Guy's Hospital, Viapath, London, UK
| | - Lev Shagam
- Institute of Pediatrics, Pirogov Russian Medical University, Moscow, Russia
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Guido Garosi
- Nephrology, Dialysis and Transplantation, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | |
Collapse
|
10
|
Li A, Cui YX, Lv X, Liu JH, Gao EZ, Wei XX, Xia XY, Gao CL, Liu FX, Xia ZK, Liu ZH, Li XJ. The COL4A3 and COL4A4 Digenic Mutations in cis Result in Benign Familial Hematuria in a Large Chinese Family. Cytogenet Genome Res 2018; 154:132-136. [PMID: 29742505 DOI: 10.1159/000488163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 01/20/2023] Open
Abstract
Mutations in the COL4A5 gene result in X-linked Alport syndrome, homozygous or compound heterozygous mutations in COL4A3 or COL4A4 are responsible for autosomal recessive Alport syndrome, and heterozygous mutations in COL4A3 or COL4A4 cause autosomal dominant Alport syndrome or benign familial hematuria. Recently, the existence of a digenic inheritance in Alport syndrome has been demonstrated. We here report heterozygous COL4A3 and COL4A4 digenic mutations in cis responsible for benign familial hematuria. Using bioinformatics analyses and pedigree verification, we showed that COL4A4 c.1471C>T and COL4A3 c.3418 + 1G>T variants in cis are pathogenic and co-segregate with the benign familial hematuria. This result suggests that COL4A3 and COL4A4 digenic mutations in cis mimicking an autosomal dominant inheritance should be considered as a novel inheritance pattern of benign familial hematuria, although the disease-causing mechanism remains unknown.
Collapse
|
11
|
Papazachariou L, Papagregoriou G, Hadjipanagi D, Demosthenous P, Voskarides K, Koutsofti C, Stylianou K, Ioannou P, Xydakis D, Tzanakis I, Papadaki A, Kallivretakis N, Nikolakakis N, Perysinaki G, Gale DP, Diamantopoulos A, Goudas P, Goumenos D, Soloukides A, Boletis I, Melexopoulou C, Georgaki E, Frysira E, Komianou F, Grekas D, Paliouras C, Alivanis P, Vergoulas G, Pierides A, Daphnis E, Deltas C. Frequent COL4 mutations in familial microhematuria accompanied by later-onset Alport nephropathy due to focal segmental glomerulosclerosis. Clin Genet 2017. [PMID: 28632965 DOI: 10.1111/cge.13077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1. In 17 families (71%), we found 15 pathogenic mutations in COL4A3/A4/A5, 9 of them novel. In 5 families patients inherited classical AS with hemizygous X-linked COL4A5 mutations. Even more patients developed later-onset Alport-related nephropathy having inherited heterozygous COL4A3/A4 mutations that cause thin basement membranes. Amongst 62 heterozygous or hemizygous patients, 8 (13%) reached ESRD, while 25% of patients with heterozygous COL4A3/A4 mutations, aged >50-years, reached ESRD. In conclusion, COL4A mutations comprise a frequent cause of FMH. Heterozygous COL4A3/A4 mutations predispose to renal function impairment, supporting that thin basement membrane nephropathy is not always benign. The molecular diagnosis is essential for differentiating the X-linked from the autosomal recessive and dominant inheritance. Finally, NGS technology is established as the gold standard for the diagnosis of FMH and associated collagen-IV glomerulopathies, frequently averting the need for invasive renal biopsies.
Collapse
Affiliation(s)
- L Papazachariou
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - G Papagregoriou
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - D Hadjipanagi
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - P Demosthenous
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - K Voskarides
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - C Koutsofti
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - K Stylianou
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - P Ioannou
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - D Xydakis
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - I Tzanakis
- Department of Nephrology, General Hospital of Chania, Crete, Greece
| | - A Papadaki
- Department of Nephrology, General Hospital of Chania, Crete, Greece
| | - N Kallivretakis
- Department of Nephrology, General Hospital of Chania, Crete, Greece
| | - N Nikolakakis
- Division of Nephrology, General Hospital of Rethymno, Crete, Greece
| | - G Perysinaki
- Division of Nephrology, General Hospital of Rethymno, Crete, Greece
| | - D P Gale
- UCL Division of Medicine and Centre for Nephrology, University College London, London, UK
| | | | - P Goudas
- IATOS Dialysis Unit, Patra, Greece
| | - D Goumenos
- Department of Nephrology, Medical School, University of Patras, Patra, Greece
| | - A Soloukides
- Protypo Nefrologiko Athinon Dialysis Center, Athens, Greece
| | - I Boletis
- Department of Nephrology, Laikon Hospital, Athens, Greece
| | - C Melexopoulou
- Department of Nephrology, Laikon Hospital, Athens, Greece
| | - E Georgaki
- Pediatric Nephrology Unit, "IASO" Children's Hospital, Athens, Greece
| | - E Frysira
- Department of Pediatrics, Athens University Medical School, Agia Sophia Children's Hospital, Athens, Greece
| | - F Komianou
- Department of Medical Genetics, Athens University Medical School, Agia Sophia Children's Hospital, Athens, Greece
| | - D Grekas
- University Hospital AXEPA, Thessaloniki, Greece
| | - C Paliouras
- Department of Nephrology, General Hospital of Rhodes, Rhodes, Greece
| | - P Alivanis
- Department of Nephrology, General Hospital of Rhodes, Rhodes, Greece
| | - G Vergoulas
- Organ Transplant Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - A Pierides
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
| | - E Daphnis
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - C Deltas
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
12
|
Mallett AJ, McCarthy HJ, Ho G, Holman K, Farnsworth E, Patel C, Fletcher JT, Mallawaarachchi A, Quinlan C, Bennetts B, Alexander SI. Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders. Kidney Int 2017; 92:1493-1506. [PMID: 28844315 DOI: 10.1016/j.kint.2017.06.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
Inherited kidney disease encompasses a broad range of disorders, with both multiple genes contributing to specific phenotypes and single gene defects having multiple clinical presentations. Advances in sequencing capacity may allow a genetic diagnosis for familial renal disease, by testing the increasing number of known causative genes. However, there has been limited translation of research findings of causative genes into clinical settings. Here, we report the results of a national accredited diagnostic genetic service for familial renal disease. An expert multidisciplinary team developed a targeted exomic sequencing approach with ten curated multigene panels (207 genes) and variant assessment individualized to the patient's phenotype. A genetic diagnosis (pathogenic genetic variant[s]) was identified in 58 of 135 families referred in two years. The genetic diagnosis rate was similar between families with a pediatric versus adult proband (46% vs 40%), although significant differences were found in certain panels such as atypical hemolytic uremic syndrome (88% vs 17%). High diagnostic rates were found for Alport syndrome (22 of 27) and tubular disorders (8 of 10), whereas the monogenic diagnostic rate for congenital anomalies of the kidney and urinary tract was one of 13. Quality reporting was aided by a strong clinical renal and genetic multidisciplinary committee review. Importantly, for a diagnostic service, few variants of uncertain significance were found with this targeted, phenotype-based approach. Thus, use of targeted massively parallel sequencing approaches in inherited kidney disease has a significant capacity to diagnose the underlying genetic disorder across most renal phenotypes.
Collapse
Affiliation(s)
- Andrew J Mallett
- Kidney Health Service and Conjoint Renal Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Australia; Faculty of Medicine, University of Queensland, Brisbane, Australia; KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia.
| | - Hugh J McCarthy
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Pediatric Nephrology, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Pediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Gladys Ho
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Katherine Holman
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Elizabeth Farnsworth
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Chirag Patel
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jeffery T Fletcher
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Amali Mallawaarachchi
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Clinical Genetics, Liverpool Hospital, Sydney, Australia; Discipline of Genetic Medicine, University of Sydney, Sydney, Australia
| | - Catherine Quinlan
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatric Nephrology, Royal Children's Hospital, Melbourne, Australia
| | - Bruce Bennetts
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Genetic Medicine, University of Sydney, Sydney, Australia
| | - Stephen I Alexander
- KidGen Renal Genetics Flagship, Australian Genomics Health Alliance, Australia; Department of Pediatric Nephrology, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Pediatrics and Child Health, University of Sydney, Sydney, Australia; Centre for Kidney Research, University of Sydney, Sydney, Australia.
| |
Collapse
|