1
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024; 82:3031-3051. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Kainulainen K, Niskanen EA, Kinnunen J, Mäki-Mantila K, Hartikainen K, Paakinaho V, Malinen M, Ketola K, Pasonen-Seppänen S. Secreted factors from M1 macrophages drive prostate cancer stem cell plasticity by upregulating NANOG, SOX2, and CD44 through NFκB-signaling. Oncoimmunology 2024; 13:2393442. [PMID: 39175947 PMCID: PMC11340773 DOI: 10.1080/2162402x.2024.2393442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The inflammatory tumor microenvironment (TME) is a key driver for tumor-promoting processes. Tumor-associated macrophages are one of the main immune cell types in the TME and their increased density is related to poor prognosis in prostate cancer. Here, we investigated the influence of pro-inflammatory (M1) and immunosuppressive (M2) macrophages on prostate cancer lineage plasticity. Our findings reveal that M1 macrophage secreted factors upregulate genes related to stemness while downregulating genes associated with androgen response in prostate cancer cells. The expression of cancer stem cell (CSC) plasticity markers NANOG, KLF4, SOX2, OCT4, and CD44 was stimulated by the secreted factors from M1 macrophages. Moreover, AR and its target gene PSA were observed to be suppressed in LNCaP cells treated with secreted factors from M1 macrophages. Inhibition of NFκB signaling using the IKK16 inhibitor resulted in downregulation of NANOG, SOX2, and CD44 and CSC plasticity. Our study highlights that the secreted factors from M1 macrophages drive prostate cancer cell plasticity by upregulating the expression of CSC plasticity markers through NFκB signaling pathway.
Collapse
Affiliation(s)
- Kirsi Kainulainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kinnunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Mäki-Mantila
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kiia Hartikainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Wu H, Li ZX, Fang K, Zhao ZY, Sun MC, Feng AQ, Leng ZY, Zhang ZH, Chu Y, Zhang L, Chen T, Xu MD. IGF-1-mediated FOXC1 overexpression induces stem-like properties through upregulating CBX7 and IGF-1R in esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:102. [PMID: 38413558 PMCID: PMC10899262 DOI: 10.1038/s41420-024-01864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Substantial evidence attests to the pivotal role of cancer stem cells (CSC) in both tumorigenesis and drug resistance. A member of the forkhead box (FOX) family, FOXC1, assumes significance in embryonic development and organogenesis. Furthermore, FOXC1 functions as an overexpressed transcription factor in various tumors, fostering proliferation, enhancing migratory capabilities, and promoting drug resistance, while maintaining stem-cell-like properties. Despite these implications, scant attention has been devoted to its role in esophageal squamous cell carcinoma. Our investigation revealed a pronounced upregulation of FOXC1 expression in ESCC, correlating with a poor prognosis. The downregulation of FOXC1 demonstrated inhibitory effects on ESCC tumorigenesis, proliferation, and tolerance to chemotherapeutic agents, concurrently reducing the levels of stemness-related markers CD133 and CD44. Further studies validated that FOXC1 induces ESCC stemness by transactivating CBX7 and IGF-1R. Additionally, IGF-1 activated the PI3K/AKT/NF-κB and MEK/ERK/NF-κB pathways through its binding to IGF-1R, thereby augmenting FOXC1 expression. Conversely, suppressing FOXC1 impeded ESCC stemness induced by IGF-1. The presence of a positive feedback loop, denoted by IGF-1-FOXC1-IGF-1R, suggests the potential of FOXC1 as a prognostic biomarker for ESCC. Taken together, targeting the IGF-1-FOXC1-IGF-1R axis emerges as a promising approach for anti-CSC therapy in ESCC.
Collapse
Affiliation(s)
- Hao Wu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zhao-Xing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zi-Ying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Ming-Chuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - An-Qi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zhu-Yun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Ze-Hua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Li Zhang
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji 8 University, 200120, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China.
| | - Mei-Dong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
5
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
6
|
Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharmacol 2023; 217:115861. [PMID: 37863329 DOI: 10.1016/j.bcp.2023.115861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway is mainly responsible for the activation and release of a cascade of proinflammatory mediators that contribute to the development of hepatic diseases. During alcoholic liver disease development, the NLRP3 inflammasome pathway contributes to the maturation of caspase-1, interleukin (IL)-1β, and IL-18, which induce a robust inflammatory response, leading to fibrosis by inducing profibrogenic hepatic stellate cell (HSC) activation. Substantial evidence demonstrates that nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) via NLRP3 inflammasome activation, ultimately leading to fibrosis and hepatocellular carcinoma (HCC). Activation of the NLRP3 inflammasome in NASH can be attributed to several factors, such as reactive oxygen species (ROS), gut dysbiosis, leaky gut, which allow triggers such as cardiolipin, cholesterol crystals, endoplasmic reticulum stress, and uric acid to reach the liver. Because inflammation triggers HSC activation, the NLRP3 inflammasome pathway performs a central function in fibrogenesis regardless of the etiology. Chronic hepatic activation of the NLRP3 inflammasome can ultimately lead to HCC; however, inflammation also plays a role in decreasing tumor growth. Some data indicate that NLRP3 inflammasome activation plays an important role in autoimmune hepatitis, but the evidence is scarce. Most researchers have reported that NLRP3 inflammasome activation is essential in liver injury induced by a variety of drugs and hepatotropic virus infection; however, few reports indicate that this pathway can play a beneficial role by inducing liver regeneration. Modulation of the NLRP3 inflammasome appears to be a suitable strategy to treat liver diseases.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, México.
| |
Collapse
|
7
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
8
|
Banerjee S, Sharma S, Thakur A, Sachdeva R, Sharma R, Nepali K, Liou JP. N-Heterocycle based Degraders (PROTACs) Manifesting Anticancer Efficacy: Recent Advances. Curr Drug Targets 2023; 24:1184-1208. [PMID: 37946353 DOI: 10.2174/0113894501273969231102095615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.
Collapse
Affiliation(s)
- Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ritika Sachdeva
- College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Liu T, Li Q, Lin Z, Wang P, Chen Y, Fu Y, Ding Z. Viral infections and the efficacy of PD-(L)1 inhibitors in virus-related cancers: Head and neck squamous cell carcinoma and hepatocellular carcinoma. Int Immunopharmacol 2021; 100:108128. [PMID: 34537483 DOI: 10.1016/j.intimp.2021.108128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE This study aimed to test the interaction between viral infections and immune checkpoint inhibitor (ICI) efficacy for two virus-associated tumors, head and neck squamous carcinoma (HNSCC) and hepatocellular carcinoma (HCC), by conducting a systematic review and meta-analysis. METHODS We searched databases from inception until December 30, 2020 to identify phase 2 or 3 randomized clinical trials involving ICI treatments with data on hazard ratios (HRs) for survival according to viral infection status. We evaluated the heterogeneity between patients with and without viral infections using an interaction test. Subgroup analyses were conducted to explore variations in the efficacy of immunotherapy according to viral infection status. RESULTS Six phase 3 trials with 3672 patients (1382 with viral infections [38%] and 2115 without viral infections [57%]) were included. Among these patients, the pooled HR for survival was 0.69 (95% confidence interval [CI], 0.60-0.79) for those with viral infections and 0.84 (95% CI, 0.77-0.91) for those without infections after ICI treatment. Patients with viral infections achieved a better prognosis after ICI therapy than those without infections (P = 0.018). This was evident in patients with hepatitis B virus-associated HCC (P = 0.016), but not in patients with hepatitis C virus-associated HCC (P = 0.081) or in patients with human papillomavirus-positive HNSCC (P = 0.67). CONCLUSION Patients with advanced HNSCC and HCC, regardless of viral infection status, could benefit from ICI treatment. Patients with hepatitis B virus-associated HCC were more likely to benefit from ICI treatment than patients without viral infections. REGISTRATION Our systematic review protocol was registered with the International Prospective Register of Systematic Reviews on March 27, 2020 (registration number CRD42020155326).
Collapse
Affiliation(s)
- Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Lin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Fu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Wang Y, Wang S, Che Y, Chen D, Liu Y, Shi Y. Exploring new targets for the treatment of hepatitis-B virus and hepatitis-B virus-associated hepatocellular carcinoma: A new perspective in bioinformatics. Medicine (Baltimore) 2021; 100:e26917. [PMID: 34414947 PMCID: PMC8376394 DOI: 10.1097/md.0000000000026917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hepatitis B Virus (HBV) infection is a global public health problem. After infection, patients experience a natural course from chronic hepatitis to cirrhosis and even Hepatitis B associated Hepatocellular Carcinoma (HBV-HCC). With the multi-omics research, many differentially expressed genes from chronic hepatitis to HCC stages have been discovered. All these provide important clues for new biomarkers and therapeutic targets. The purpose of this study is to explore the differential gene expression of HBV and HBV-related liver cancer, and analyze their enrichments and significance of related pathways. METHODS In this study, we downloaded four microarray datasets GSE121248, GSE67764, GSE55092, GSE55092 and GSE83148 from the Gene Expression Omnibus (GEO) database. Using these four datasets, patients with chronic hepatitis B (CHB) differentially expressed genes (CHB DEGs) and patients with HBV-related HCC differentially expressed genes (HBV-HCC DEGs) were identified. Then Protein-protein Interaction (PPI) network analysis, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to excavate the functional interaction of these two groups of DEGs and the common DEGs. Finally, the Kaplan website was used to analyze the role of these genes in HCC prognostic. RESULTS A total of 241 CHB DEGs, 276 HBV-HCC DEGs, and 4 common DEGs (cytochrome P450 family 26 subfamily A member 1 (CYP26A1), family with sequence similarity 110 member C(FAM110C), SET and MYND domain containing 3(SMYD3) and zymogen granule protein 16(ZG16)) were identified. CYP26A1, FAM110C, SMYD3 and ZG16 exist in 4 models and interact with 33 genes in the PPI network of CHB and HBV-HCC DEGs,. GO function analysis showed that: CYP26A1, FAM110C, SMYD3, ZG16, and the 33 genes in their models mainly affect the regulation of synaptic vesicle transport, tangential migration from the subventricular zone to the olfactory bulb, cellular response to manganese ion, protein localization to mitochondrion, cellular response to dopamine, negative regulation of neuron death in the biological process of CHB. In the biological process of HBV-HCC, they mainly affect tryptophan catabolic process, ethanol oxidation, drug metabolic process, tryptophan catabolic process to kynurenine, xenobiotic metabolic process, retinoic acid metabolic process, steroid metabolic process, retinoid metabolic process, steroid catabolic process, retinal metabolic process, and rogen metabolic process. The analysis of the 4 common DEGs related to the prognosis of liver cancer showed that: CYP26A1, FAM110C, SMYD3 and ZG16 are closely related to the development of liver cancer and patient survival. Besides, further investigation of the research status of the four genes showed that CYP26A1 and SMYD3 could also affect HBV replication and the prognosis of liver cancer. CONCLUSION CYP26A1, FAM110C, SMYD3 and ZG16 are unique genes to differentiate HBV infection and HBV-related HCC, and expected to be novel targets for HBV-related HCC occurrence and prognostic judgement.
Collapse
|
11
|
Ngo MHT, Peng SW, Kuo YC, Lin CY, Wu MH, Chuang CH, Kao CX, Jeng HY, Lin GW, Ling TY, Chang TS, Huang YH. A Yes-Associated Protein (YAP) and Insulin-Like Growth Factor 1 Receptor (IGF-1R) Signaling Loop Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3812. [PMID: 34359714 PMCID: PMC8345119 DOI: 10.3390/cancers13153812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The role of a YAP-IGF-1R signaling loop in HCC resistance to sorafenib remains unknown. METHOD Sorafenib-resistant cells were generated by treating naïve cells (HepG2215 and Hep3B) with sorafenib. Different cancer cell lines from databases were analyzed through the ONCOMINE web server. BIOSTORM-LIHC patient tissues (46 nonresponders and 21 responders to sorafenib) were used to compare YAP mRNA levels. The HepG2215_R-derived xenograft in SCID mice was used as an in vivo model. HCC tissues from a patient with sorafenib failure were used to examine differences in YAP and IGF-R signaling. RESULTS Positive associations exist among the levels of YAP, IGF-1R, and EMT markers in HCC tissues and the levels of these proteins increased with sorafenib failure, with a trend of tumor-margin distribution in vivo. Blocking YAP downregulated IGF-1R signaling-related proteins, while IGF-1/2 treatment enhanced the nuclear translocation of YAP in HCC cells through PI3K-mTOR regulation. The combination of YAP-specific inhibitor verteporfin (VP) and sorafenib effectively decreased cell viability in a synergistic manner, evidenced by the combination index (CI). CONCLUSION A YAP-IGF-1R signaling loop may play a role in HCC sorafenib resistance and could provide novel potential targets for combination therapy with sorafenib to overcome drug resistance in HCC.
Collapse
Affiliation(s)
- Mai-Huong T. Ngo
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (C.-X.K.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-W.P.); (G.-W.L.)
| | - Sue-Wei Peng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-W.P.); (G.-W.L.)
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.K.); (H.-Y.J.)
| | - Yung-Che Kuo
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.K.); (H.-Y.J.)
| | - Chun-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan; (C.-Y.L.); (C.-H.C.)
| | - Ming-Heng Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hsien Chuang
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan; (C.-Y.L.); (C.-H.C.)
| | - Cheng-Xiang Kao
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (C.-X.K.)
| | - Han-Yin Jeng
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.K.); (H.-Y.J.)
| | - Gee-Way Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-W.P.); (G.-W.L.)
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 100, Taiwan;
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yen-Hua Huang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (C.-X.K.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-W.P.); (G.-W.L.)
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.K.); (H.-Y.J.)
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Au HK, Peng SW, Guo CL, Lin CC, Wang YL, Kuo YC, Law TY, Ho HN, Ling TY, Huang YH. Niche Laminin and IGF-1 Additively Coordinate the Maintenance of Oct-4 Through CD49f/IGF-1R-Hif-2α Feedforward Loop in Mouse Germline Stem Cells. Front Cell Dev Biol 2021; 9:646644. [PMID: 34381769 PMCID: PMC8351907 DOI: 10.3389/fcell.2021.646644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanism on how extracellular matrix (ECM) cooperates with niche growth factors and oxygen tension to regulate the self-renewal of embryonic germline stem cells (GSCs) still remains unclear. Lacking of an appropriate in vitro cell model dramatically hinders the progress. Herein, using a serum-free culture system, we demonstrated that ECM laminin cooperated with hypoxia and insulin-like growth factor 1 receptor (IGF-1R) to additively maintain AP activity and Oct-4 expression of AP+GSCs. We found the laminin receptor CD49f expression in d2 testicular GSCs that were surrounded by laminin. Laminin and hypoxia significantly increased the GSC stemness-related genes, including Hif-2α, Oct-4, IGF-1R, and CD49f. Cotreatment of IGF-1 and laminin additively increased the expression of IGF-IR, CD49f, Hif-2α, and Oct-4. Conversely, silencing IGF-1R and/or CD49f decreased the expression of Hif-2α and Oct-4. The underlying mechanism involved CD49f/IGF1R-(PI3K/AKT)-Hif-2α signaling loop, which in turn maintains Oct-4 expression, symmetric self-renewal, and cell migration. These findings reveal the additive niche laminin/IGF-IR network during early GSC development.
Collapse
Affiliation(s)
- Heng-Kien Au
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Syue-Wei Peng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chien-Chia Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lin Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsz-Yau Law
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hua Huang
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
14
|
Dai X, Guo Y, Hu Y, Bao X, Zhu X, Fu Q, Zhang H, Tong Z, Liu L, Zheng Y, Zhao P, Fang W. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics 2021; 11:3489-3501. [PMID: 33537099 PMCID: PMC7847682 DOI: 10.7150/thno.54648] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development and remarkable success of checkpoint inhibitors have provided significant breakthroughs in cancer treatment, including hepatocellular carcinoma (HCC). However, only 15-20% of HCC patients can benefit from checkpoint inhibitors. Cancer stem cells (CSCs) are responsible for recurrence, metastasis, and local and systemic therapy resistance in HCC. Accumulating evidence has suggested that HCC CSCs can create an immunosuppressive microenvironment through certain intrinsic and extrinsic mechanisms, resulting in immune evasion. Intrinsic evasion mechanisms mainly include activation of immune-related CSC signaling pathways, low-level expression of antigen presenting molecules, and high-level expression of immunosuppressive molecules. External evasion mechanisms are mainly related to HBV/HCV infection, alcoholic/nonalcoholic steatohepatitis, hypoxia stimulation, abnormal angiogenesis, and crosstalk between CSCs and immune cells. A better understanding of the complex mechanisms of CSCs involved in immune evasion will contribute to therapies for HCC. Here we will outline the detailed mechanisms of immune evasion for CSCs, and provide an overview of the current immunotherapies targeting CSCs in HCC.
Collapse
MESH Headings
- Antigen Presentation/drug effects
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Fatty Liver/genetics
- Fatty Liver/immunology
- Fatty Liver/pathology
- Fatty Liver/therapy
- Gene Expression Regulation, Neoplastic
- Hepatitis B/genetics
- Hepatitis B/immunology
- Hepatitis B/pathology
- Hepatitis B/therapy
- Hepatitis C/genetics
- Hepatitis C/immunology
- Hepatitis C/pathology
- Hepatitis C/therapy
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Chen PC, Kuo YC, Chuong CM, Huang YH. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front Cell Dev Biol 2021; 8:625943. [PMID: 33511137 PMCID: PMC7835526 DOI: 10.3389/fcell.2020.625943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells work with their niches harmoniously during development. This concept has been extended to cancer pathology for cancer stem cells (CSCs) or cancer reprogramming. IGF-1R, a classical survival signaling, has been shown to regulate stem cell pluripotency, CSCs, or cancer reprogramming. The mechanism underlying such cell fate determination is unclear. We propose the determination is due to different niches in embryo development and tumor malignancy which modulate the consequences of IGF-1R signaling. Here we highlight the modulations of these niche parameters (hypoxia, inflammation, extracellular matrix), and the targeted stem cells (embryonic stem cells, germline stem cells, and mesenchymal stem cells) and CSCs, with relevance to cancer reprogramming. We organize known interaction between IGF-1R signaling and distinct niches in the double-sided cell fate with emerging trends highlighted. Based on these new insights, we propose that, through targeting IGF-1R signaling modulation, stem cell therapy and cancer stemness treatment can be further explored.
Collapse
Affiliation(s)
- Pei-Chin Chen
- Department of Education, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Hong YM, Cho M, Yoon KT, Ryu JH, Yang KH, Hwang TH. Preoperative blood neutrophil count predicts survival in hepatocellular carcinoma patients with living donor liver transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2020; 34:92-99. [PMID: 35769348 PMCID: PMC9194438 DOI: 10.4285/kjt.2020.34.2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 11/12/2022] Open
Abstract
Background The Milan criteria (MC) used to select patients for liver transplantation among patients with hepatocellular carcinoma (HCC) do not include tumor biology. Furthermore, systemic inflammatory markers have been identified to predict tumor biology. The present study investigated prognostic value of systemic inflammatory markers, including neutrophil count, in predicting the prognosis of patients with HCC undergoing living donor liver transplantation (LDLT). Methods We retrospectively analyzed data regarding peripheral blood inflammatory markers, as well as patient and tumor characteristics of patients with HCC who underwent LDLT. Univariate and multivariate analyses were performed to analyze variables associated with survival. Results A total of 103 patients with HCC who underwent LDLT were included. The 3- and 5-year recurrence-free survival (RFS) in patients with a high neutrophil count (>2,640/µL) were significantly lower than those in patients with a low neutrophil count (≤2,640/µL; 70.0% and 64.7% vs. 88.3% and 84.6%, respectively; P=0.02). Patients with a high neutrophil count also had lower 5-year overall survival (OS; 63.9% vs. 79.3%, P=0.03). In multivariate analysis, radiologic MC (hazard ratio [HR], 5.04; P=0.02) and neutrophil count (HR, 4.47; P=0.04) were independent factors predicting RFS. Among patients exceeding the MC, those with a high neutrophil count had significantly lower 5-year RFS than those with low neutrophil count (10% vs. 83%; P<0.01). Conclusions We demonstrated that high preoperative neutrophil count is associated with poor RFS and OS in patients with HCC undergoing LDLT.
Collapse
Affiliation(s)
- Young Mi Hong
- Department of Internal Medicine, Pusan National University School of Medicine, Liver center, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Mong Cho
- Department of Internal Medicine, Pusan National University School of Medicine, Liver center, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ki Tae Yoon
- Department of Internal Medicine, Pusan National University School of Medicine, Liver center, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Je Ho Ryu
- Department of Surgery, Pusan National University School of Medicine, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kwang Ho Yang
- Department of Surgery, Pusan National University School of Medicine, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Tae Ho Hwang
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
17
|
Ye C, Zhang X, Chen X, Cao Q, Zhang X, Zhou Y, Li W, Hong L, Xie H, Liu X, Cao H, Wang YJ, Kang B. Multiple novel hepatocellular carcinoma signature genes are commonly controlled by the master pluripotency factor OCT4. Cell Oncol (Dordr) 2020; 43:279-295. [PMID: 31848930 DOI: 10.1007/s13402-019-00487-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Worldwide, hepatocellular carcinoma (HCC) is a common solid tumor with a poor prognosis. HCC is often due to hepatitis B virus (HBV) infection. As yet, efficacious HCC treatment regimens for late-stage HCC patients are lacking. Therefore, the identification of more specific and sensitive biomarkers for its early diagnosis and treatment remains an urgent need. METHODS Total RNAs from paired HBV-derived HCC tumors and adjacent peritumor tissues (APTs) were subjected to RNA sequencing (RNA-seq), and differentially expressed genes (DEGs) between HCC tumors and APTs were selected and verified. RESULTS We identified 166 DEGs and found that eight top-ranked and verified DEGs (TK1, CTTN, CEP72, TRIP13, FTH1, FLAD1, CHRM2, AMBP) all contained putative OCT4 binding motifs in their promoter regions. TK1, TRIP13 and OCT4 were found to exhibit concurrent higher expression levels in HCC tumors than in APTs. The mRNA levels of TK1, TRIP13 and OCT4 in a cohort of 384 HCC samples from the TCGA database were all found to be negatively correlated with patient overall survival, relapse-free survival and progression-free survival, underscoring the HCC biomarker status of TK1 and TRIP13 on one hand, and implicating their association with OCT4 on the other hand. Furthermore, OCT4 proteins were found to bind to the promoters of both genes in vitro and in vivo. Knocking out OCT4 in HCC-derived cell lines reduced the expression of TK1 and TRIP13 and significantly decreased their tumorigenicity. CONCLUSIONS Using RNA-seq, we identified several novel HCC signature genes that may serve as biomarkers for its diagnosis and prognosis. Their common transcriptional regulation by OCT4 suggests key roles in the development of HCC, and indicates that OCT4 may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
| | - Yanwen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
- Department of Infectious Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenxin Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
- Department of Respiratory Medicine, Institute of Respiratory Disease, The First College of Clinical Medical Sciences, Yichang Central People's Hospital, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Liangjie Hong
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haiyang Xie
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China.
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
18
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
19
|
BNIP3L-Dependent Mitophagy Promotes HBx-Induced Cancer Stemness of Hepatocellular Carcinoma Cells via Glycolysis Metabolism Reprogramming. Cancers (Basel) 2020; 12:cancers12030655. [PMID: 32168902 PMCID: PMC7139741 DOI: 10.3390/cancers12030655] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is one of predisposing factors for hepatocellular carcinoma (HCC). The role of HBV x protein (HBx) in mediating the induction and maintenance of cancer stemness during HBV-related HCC attracts considerable attention, but the exact mechanism has not been clearly elucidated. Here, ABCG2-dependent stem-like side population (SP) cells, which are thought to be liver cancer stem cells (LCSCs), were present in HCC cells, and the fraction of this subset was increased in HBx-expressing HCC cells. In addition, glycolysis was upregulated in LCSCs and HBx-expressing HCC cells, and intervention of glycolysis attenuated cancer stem-like phenotypes. Mitochondria play an important role in the maintenance of energy homeostasis, BNIP3L-dependent mitophagy was also activated in LCSCs and HBx-expressing HCC cells, which triggered a metabolic shift toward glycolysis. In summary, we proposed a positive feedback loop, in which HBx induced BNIP3L-dependent mitophagy which upregulated glycolytic metabolism, increasing cancer stemness of HCC cells in vivo and in vitro. BNIP3L might be a potential therapeutic target for intervention of LCSCs-associated HCC. Anti-HBx, a monoclonal antibody targeting intracellular HBx, had the potential to delay the progression of HBV infection related-HCC.
Collapse
|
20
|
Cheng JS, Tsai WL, Liu PF, Goan YG, Lin CW, Tseng HH, Lee CH, Shu CW. The MAP3K7-mTOR Axis Promotes the Proliferation and Malignancy of Hepatocellular Carcinoma Cells. Front Oncol 2019; 9:474. [PMID: 31214512 PMCID: PMC6558008 DOI: 10.3389/fonc.2019.00474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022] Open
Abstract
Targeted therapy is currently limited for patients with hepatocellular carcinoma (HCC) due to the lack of suitable targets. Kinases play pivotal roles in many cellular biological processes, whereas dysregulation of kinases may lead to various diseases, particularly cancer. However, the role of kinases in HCC malignancy remains unclear. In this study, we employed a kinome small interfering RNA (siRNA) library, comprising 710 kinase-related genes, to screen whether any kinases were essential for cell proliferation in various HCC cell lines. Through a kinome siRNA library screening, we found that MAP3K7 was a crucial gene for HCC cell proliferation. Pharmacological or genetic ablation of MAP3K7 diminished the growth, migration, and invasion of HCC cells, including primary HCC cells. Stable knockdown of MAP3K7 attenuated tumor formation in a spheroid cell culture model and tumor xenograft mouse model. In addition, silencing MAP3K7 reduced the phosphorylation and expression of mammalian target of rapamycin (mTOR) in HCC cells. MAP3K7 expression was positively correlated with mTOR expression in tumors of patients with HCC. Higher co-expression of MAP3K7 and mTOR was significantly associated with poor prognosis of HCC. Taken together, our results revealed that the MAP3K7-mTOR axis might promote tumorigenesis and malignancy, which provides a potential marker or therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Lin
- Division of Gastroenterology and Hepatology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Ho-Hsing Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Ding X, Lei Q, Li T, Li L, Qin B. Hepatitis B core antigen can regulate NLRP3 inflammasome pathway in HepG2 cells. J Med Virol 2019; 91:1528-1536. [PMID: 31017673 DOI: 10.1002/jmv.25490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) has four open reading frames (ORFs) of which ORF C is consists of the pre Core and Core genes encodes the Hepatitis B core antigen (HBcAg) and Hepatitis B e antigen (HBeAg). Studies have shown that HBeAg significantly inhibits the NLRP3 inflammasome activation and interleukin-1β (IL-1β) production. However, the role of HBcAg and ORF C proteins (in this paper, ORF C proteins = HBcAg + HBeAg) were remain unclear. Our study aims to assess whether HBcAg and ORF C proteins can affect the NLRP3 inflammasome pathway. Vectors expressing ORF C proteins and HBcAg were designed and transfected into HepG2 cells. And then, cells were stimulated with lipopolysaccharide (LPS). Activation of the NLRP3 inflammasome and the levels of IL-1β and IL-18 were evaluated by Western blot analysis, quantitative reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunofluorescence. The expression of NLRP3 and IL-1β peaked when HepG2 cells were stimulated with 1000 ng/mL LPS for 18 to 24 hours. HBcAg, but not ORF C proteins, promoted LPS-induced NLRP3 inflammasome activation and IL-1β production. These findings provide a novel mechanism on how the HBV causes liver inflammation and may provide insights into the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolin Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Lei
- Department of Oncology, Chongqing Cancer Hospital, Chongqing, People's Republic of China
| | - Tianju Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Li
- Department of Liver Diseases, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Yang Z, Peng Y, Yang S. MicroRNA-146a regulates the transformation from liver fibrosis to cirrhosis in patients with hepatitis B via interleukin-6. Exp Ther Med 2019; 17:4670-4676. [PMID: 31086599 DOI: 10.3892/etm.2019.7490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to measure the expression of microRNA (miR)-146a in liver tissues, peripheral blood mononuclear cells (PMBC) and serum from patients with Hepatitis B and either liver fibrosis or cirrhosis, as well as to determine the regulatory mechanism of miR-146a. A total of 36 patients with Hepatitis B and liver fibrosis and 25 patients with hepatitis B and liver cirrhosis admitted to Linyi People's Hospital (Shandong, China) between June 2012 and February 2016 were included in the present study. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of miR-146a and interleukin (IL)-6 mRNA in the liver tissue, PBMCs and serum. Western blotting was used to assess the expression of IL-6 in liver tissues and PBMCs. An enzyme-linked immunosorbent assay was conducted to measure IL-6 levels in serum. To identify the direct interaction between IL-6 and miR-146a, a dual luciferase reporter assay was performed. IL-6 mRNA expression in liver tissues, PBMCs and serum from patients with liver cirrhosis was significantly higher than that from patients with liver fibrosis (P<0.05). Furthermore, IL-6 expression in liver tissues and PBMCs from patients with liver cirrhosis was enhanced and levels of IL-6 protein in the serum of patients with liver cirrhosis were significantly elevated compared with patients with liver fibrosis (P<0.05). By contrast, levels of miR-146a in liver tissues, PBMCs and serum from patients with liver cirrhosis were significantly downregulated (P<0.05) compared with patients with liver fibrosis. miR-146a regulated the expression of IL-6 by binding to its 3'-untranslated region. Thus, in the transformation from liver fibrosis to cirrhosis, the upregulation of IL-6 in liver tissues, PBMCs and serum may be associated with the downregulation of miR-146a. miR-146a directly targets IL-6, which may regulate the occurrence and immune responses of Hepatitis B.
Collapse
Affiliation(s)
- Zhaohui Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yulong Peng
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Suxian Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
23
|
Du S, Liao S, Liu S, Xin Y. TM6SF2 E167K Variant Overexpression Promotes Expression of Inflammatory Cytokines in the HCC Cell Line HEPA 1-6. J Clin Transl Hepatol 2019; 7:27-31. [PMID: 30944816 PMCID: PMC6441636 DOI: 10.14218/jcth.2018.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022] Open
Abstract
Background and Aims: Accumulated evidence has shown that chronic liver inflammation is one of the main risks of hepatocellular carcinoma (HCC), and E167K variant of the transmembrane 6 superfamily member 2 (TM6SF2) plays an important role in the progression of chronic liver diseases and HCC. The aim of this study was to explore effects of the TM6SF2 E167K variant on expression of the inflammatory cytokines TNF-α, IL-2, IL-6 and IL-8 in the HCC cell line HEPA 1-6. Methods: HEPA 1-6 cells were infected with lentivirus containing either the TM6SF2 E167K variant or TM6SF2 wild-type, or control plasmids. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were conducted to analyze the expression of the inflammatory cytokines TNF-α, IL-2, IL-6 and IL-8. A t-test was used for statistical analysis. Results: Compared with the control group and TM6SF2 overexpression group, the relative expression of IL-2 and IL-6 mRNAs were significantly elevated in the TM6SF2 E167K overexpression group (p < 0.05). The relative mRNA expression of IL-8 in the TM6SF2 and TM6SF2 E167K overexpression groups were increased compared to the control group (p < 0.05). No obvious differences were observed for the expression of TNF-α in each group. The expression of TNF-α, IL-2, IL-6 and IL-8 that was tested by western blotting showed the same trends as the qRT-PCR results. Conclusions: In conclusion, the E167K variant of the TM6SF2 gene could promote the expression of inflammatory cytokines IL-2 and IL-6 in HEPA 1-6 cells, suggesting that the TM6SF2 E167K variant may accelerate the progression of HCC.
Collapse
Affiliation(s)
- Shuixian Du
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Songling Liao
- Department of Gastroenterology, Dalian Medical University, Dalian, China
| | - Shousheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Department of Gastroenterology, Dalian Medical University, Dalian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
24
|
Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19082385. [PMID: 30104541 PMCID: PMC6121292 DOI: 10.3390/ijms19082385] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects up to 10% of women of reproductive age and accounts for up to 50% of female infertility cases. It has been highly associated with poorer outcomes of assisted reproductive technology (ART), including decreased oocyte retrieval, lower implantation, and pregnancy rates. A better understanding of the pathogenesis of endometriosis-associated infertility is crucial for improving infertility treatment outcomes. Current theories regarding how endometriosis reduces fertility include anatomical distortion, ovulatory dysfunction, and niche inflammation-associated peritoneal or implantation defects. This review will survey the latest evidence on the role of inflammatory niche in the peritoneal cavity, ovaries, and uterus of endometriosis patients. Nonhormone treatment strategies that target these inflammation processes are also included. Furthermore, mesenchymal stem cell-based therapies are highlighted for potential endometriosis treatment because of their immunomodulatory effects and tropism toward inflamed lesion foci. Potential applications of stem cell therapy in treatment of endometriosis-associated infertility in particular for safety and efficacy are discussed.
Collapse
|
25
|
Khatun M, Mondal RK, Pal S, Baidya A, Bishnu D, Banerjee P, Santra AK, Dhali GK, Banerjee S, Chowdhury A, Datta S. Distinctiveness in virological features and pathogenic potentials of subgenotypes D1, D2, D3 and D5 of Hepatitis B virus. Sci Rep 2018; 8:8055. [PMID: 29795338 PMCID: PMC5966457 DOI: 10.1038/s41598-018-26414-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Distinct clinical features of HBV infection have been associated with different viral genotype/subgenotype. HBV Genotype-D comprised of 10 subgenotypes, D1–D10, whose clinical implications still remain elusive. We investigated for the first-time, the virologic characteristics and cytopathic effects of four non-recombinant D-subgenotypes, D1/D2/D3/D5. Expressions of viral/host genes were evaluated in Huh7 cells transfected with full-length, linear-monomers of HBV/D-subgenotypes or pGL3-Basic vector carrying subgenotype-specific HBx. Intracellular HBV-DNA and pregenomic-RNA levels were high in D1/D2 than D3/D5. Expressions of PreC-mRNA and HBx were highest for D2 and D1 respectively, whereas PreS2/S-transcript was significantly reduced in D5. Increased apoptotic cell death and marked upregulation in caspase-3/Bax/TNF-R1/FasR/TRAIL-R1/ROS/MCP-1/IP-10/MIP-1β expression were noticed specifically in D2- and also in D3-transfected cells, while D5 resulted in over-expression of ER-stress-markers. D-subgenotype-transfected Huh7 cells were co-cultured with PBMC of healthy-donors or LX-2 cells and significant increase in pro-inflammatory cytokines in PBMC and fibrogenic-markers in LX-2 were noticed in presence of D2/D3. Further, Huh7 cells transfected with D1, in particular and also D5, displayed remarkable induction of EMT-markers and high proliferative/migratory abilities. Collectively, our results demonstrated that D2/D3 were more associated with hepatic apoptosis/inflammation/fibrosis and D1/D5 with increased risk of hepatocarcinogenesis and emphasize the need for determining HBV-subgenotype in clinical practice.
Collapse
Affiliation(s)
- Mousumi Khatun
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Rajiv Kumar Mondal
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Sourina Pal
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Ayana Baidya
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Debasree Bishnu
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Priyanka Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Amal Kumar Santra
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Gopal Krishna Dhali
- Department of Gastroenterology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, India.
| |
Collapse
|
26
|
Yuan J, Liang H, Li J, Li M, Tang B, Ma H, Xie X, Yin X, Zhang L, Ren Z. Peripheral blood neutrophil count as a prognostic factor for patients with hepatocellular carcinoma treated with sorafenib. Mol Clin Oncol 2017; 7:837-842. [PMID: 29181175 PMCID: PMC5700259 DOI: 10.3892/mco.2017.1416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Sorafenib is currently the only efficient molecular targeted therapy for hepatocellular carcinoma (HCC), although its effect is relatively moderate and variable between individuals. The present study aimed to evaluate the significance of peripheral blood neutrophils in the prognosis of HCC patients treated with sorafenib. A total of 464 patients with HCC were treated with sorafenib at Zhongshan Hospital (Shanghai, China) between January 1st, 2008 and December 31st, 2012, among which 120 patients were enrolled in the study. The optimal cutoff point for low vs. high neutrophil count (3.65×109) was obtained from a receiver operating characteristic curve. Overall survival (OS) was compared between the patients with low and high peripheral neutrophil counts. Univariate and multivariate analyses were used to explore the prognostic factors associated with OS in the patients treated with sorafenib. A nomogram model was also performed to predict the OS times of these patients. The median OS time was 9.0 months (95% confidence interval, 5.9-12.1 months) in the whole group of patients, with 1-, 2- and 3-year OS rates of 36, 24 and 16%, respectively. Using a cutoff level of 3.65×109 neutrophils/l, the median OS time was longer in the group of patients with a low peripheral neutrophil count than in those with a high peripheral neutrophil count (11.5 vs. 5.0 months, respectively; P<0.001). The multivariate analysis showed that peripheral neutrophil count, α-fetoprotein level and tumor size were independent prognostic factors for OS. In addition, using the nomogram model for the prediction of OS, the Harrell's c-index was 0.79. Therefore, it was concluded that a lower peripheral blood neutrophil count was associated with a better prognosis following treatment with sorafenib therapy.
Collapse
Affiliation(s)
- Jia Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Hongming Liang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Jinghuan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Bei Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Hui Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| |
Collapse
|
27
|
Chen Y, Yang S, Peng Y, Yang Z. The regulatory role of IL-6R in hepatitis B-associated fibrosis and cirrhosis. ACTA ACUST UNITED AC 2017; 50:e6246. [PMID: 28953986 PMCID: PMC5609599 DOI: 10.1590/1414-431x20176246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
This study investigated the expression and regulation of IL-6R in hepatitis B-associated moderate hepatic fibrosis and cirrhosis. Liver tissues, peripheral blood monocytes (PBMs) and serum were collected from 26 hepatitis B patients with liver fibrosis and 35 hepatitis B patients with liver cirrhosis. The levels of Il-6r mRNA expression in these samples were examined by quantitative real-time PCR and IL-6R protein levels were analyzed by western blot and ELISA. MiRNAs that regulate IL-6R expression were predicted by bioinformatics analysis, and validated by dual luciferase reporter assay. Compared with the hepatic fibrosis group, IL-6R was significantly upregulated at both mRNA and protein levels in liver tissues, PBMs and serum samples from the hepatic cirrhosis group (P<0.05). The 3'UTR of Il-6r mRNA was predicted to contain a miR-30b binding site and IL-6R was identified as a possible target of miR-30b. MiR-30b expression was significantly downregulated in samples from hepatic cirrhosis patients compared with hepatic fibrosis patients (P<0.05). In conclusion, IL-6R was upregulated while miR-30b was decreased in patients with liver cirrhosis. The miR-30 can directly regulate the expression of IL-6R.
Collapse
Affiliation(s)
- Y Chen
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| | - S Yang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| | - Y Peng
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| | - Z Yang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
28
|
Liu L, Cai X, Liu E, Tian X, Tian C. MicroRNA-18a promotes proliferation and metastasis in hepatocellular carcinoma via targeting KLF4. Oncotarget 2017; 8:68263-68269. [PMID: 28978114 PMCID: PMC5620254 DOI: 10.18632/oncotarget.19293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that played as important roles in the proliferation and metastasis of tumors. In this study, we determined the role of miR-18a in the regulation of HCC cell motility. We showed that miR-18a expression was upregulated in human HCC tissues and cell lines. Moreover, Elevated expression of miR-18a promoted the HCC cell proliferation and migration. KLF4 was identified as a direct target of miR-18a in HCC cells. Furthermore, overexpression of KLF4 attenuated the effects of miR-18a on the regulation of HCC cell motility. The expression of KLF4 was negatively associated with the expression of miR-18a expression in HCC tissues. We also showed that the cell cycle inhibitor p21 was aberrantly downregulated in HCC cells, whereas this inhibition was reversed by miR-18a inhibitor. These data indicated that miR-18a may play a positive role in hepatocellular carcinoma by promoting the proliferation and migration of HCC cells through targeting KLF4 as well as downstream p21.
Collapse
Affiliation(s)
- Li Liu
- Department of Medicine & Appliance, Yunyan District Market Supervision and Administration Bureau, Guizhou 550001, China
| | - Xun Cai
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Enqiang Liu
- Department of Oncology, Qianjiang Central Hospital of Chongqing Municipality, Chongqing 409000, China
| | - Xia Tian
- Department of Nuclear Medicine, Guizhou Provincial People’s Hospital, Guizhou 550000, China
| | - Chuan Tian
- Department of Nuclear Medicine, Guizhou Provincial People’s Hospital, Guizhou 550000, China
| |
Collapse
|
29
|
Zhu Q, Li N, Li F, Sang J, Deng H, Han Q, Lv Y, Li C, Liu Z. Association of LTBR polymorphisms with chronic hepatitis B virus infection and hepatitis B virus-related hepatocellular carcinoma. Int Immunopharmacol 2017; 49:126-131. [PMID: 28575727 DOI: 10.1016/j.intimp.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022]
Abstract
Lymphotoxin-β receptor (LTβR) signaling is involved in hepatitis B virus (HBV) infection, hepatitis and liver carcinogenesis. However, the potential association between LTBR polymorphisms and HBV infection remains unclear. This study investigated the associations between LTBR polymorphisms and chronic HBV infection and HBV-related hepatocellular carcinoma (HCC). The study included 409 patients with chronic HBV infection, 73 HBV infection resolvers, and 197 healthy controls. Two polymorphisms rs12354 and rs3759333 were selected and genotyped by polymerase chain reaction-ligase detection reaction method. The frequencies of rs12354 genotype GT and allele T in HBV infection resolvers were significantly higher than those in patients with chronic HBV infection and healthy controls (genotype GT: 38.4% vs. 22.2% and 38.4% vs. 20.8%, P=0.004 and P=0.004, respectively; allele T: 20.5% vs. 13.1% and 20.5% vs. 12.9%, P=0.017 and P=0.028, respectively). The frequencies of rs3759333 genotypes and alleles between HBV patients, HBV infection resolvers and healthy controls had no statistical difference. The genotype and allele frequencies of rs12354 and rs3759333 had no statistical differences between chronic hepatitis B and HBV-related HCC patients. The serum LTβR levels and the overall survival rate between HBV-related HCC patients carrying different rs12354 and rs3759333 genotypes had no statistical differences. These results suggest that the LTBR rs12354 polymorphism might be associated with the spontaneous resolution of HBV infection. Additional studies with large sample size are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Huan Deng
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chunyan Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
30
|
An SM, Lei HM, Ding XP, Sun F, Zhang C, Tang YB, Chen HZ, Shen Y, Zhu L. Interleukin-6 identified as an important factor in hypoxia- and aldehyde dehydrogenase-based gefitinib adaptive resistance in non-small cell lung cancer cells. Oncol Lett 2017; 14:3445-3454. [PMID: 28927099 PMCID: PMC5588073 DOI: 10.3892/ol.2017.6613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/25/2017] [Indexed: 12/23/2022] Open
Abstract
Gefitinib resistance and relapse of the disease were the greatest challenges facing clinical therapy of non-small-cell lung cancer (NSCLC). Of note, regarding the hypoxia condition in solid tumor tissues in vivo, roles of hypoxia in gefitinib adaptive resistance and its association with lung cancer stem cells (LCSCs) have not been fully elucidated. In the present study, the role of hypoxia in gefitinib adaptive resistance and its association with aldehyde dehydrogenase (ALDH)-based LCSC gefitinib resistance were comparatively studied using RNA-sequencing (RNA-seq) technology. Co-treatment of PC9 cells with gefitinib and hypoxia (1% O2) significantly enhanced adaptive resistance compared with gefitinib or hypoxia treatment alone. An ALDEFLUOR assay demonstrated that there was a significant increase of ALDH expression level in hypoxia and gefitinib co-treated PC9 cells, in addition to a higher ratio of G0/G1 quiescent cell enrichment and acquisition of epithelial-mesenchymal transition. RNA-seq analysis revealed that interleukin-6 (IL-6) is an important common factor in hypoxia and ALDH-based gefitinib resistance, supported by inflammation-associated tumor necrosis factor, nuclear factor-κB and Janus kinase-signal transducer and activator of transcription signaling pathway enrichment. Furthermore, exposure of PC9 and HCC827 cells to IL-6 increased gefitinib adaptive resistance. Consequently, IL-6 expression level was a poor prognostic marker for patients with NSCLC and adenocarcinoma. Thus, targeting IL-6 combined with tyrosine kinase inhibitor treatment may be promising in NSCLC clinical therapy in the future.
Collapse
Affiliation(s)
- Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Fan Sun
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Department of Pharmacy, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Chun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
31
|
RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo. Proc Natl Acad Sci U S A 2017; 114:E1413-E1421. [PMID: 28174275 DOI: 10.1073/pnas.1621161114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins overexpressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of α-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.
Collapse
|
32
|
Correction: Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS One 2017; 12:e0171176. [PMID: 28125744 PMCID: PMC5268363 DOI: 10.1371/journal.pone.0171176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Tao R, Li X, Ran R, Xiao Z, Zhang H, Kong H, Song Q, Huang Y, Wang L, Huang J. A mixed analysis comparing nine minimally invasive surgeries for unresectable hepatocellular carcinoma patients. Oncotarget 2017; 8:5460-5473. [PMID: 27705924 PMCID: PMC5354923 DOI: 10.18632/oncotarget.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is usually managed by the transcatheter arterial chemoembolization (TACE). However, this technique has been challenged since severe complications have been observed in clinical practices. As a result, clinicians have started to seek other minimally invasive surgeries with equivalent efficacy. The corresponding surgeries were assessed by the five outcomes: complete response (CR), partial response (PR), stable disease (SD), progression disease (PD) and objective response rate (ORR). Direct meta-analysis and network meta-analysis were performed and the results were represented by odds ratios (OR), 95% confidence and credential intervals. Furthermore, the value of surface under the cumulative ranking curve (SUCRA)was calculated to provide corresponding rankings.Seventeen studies were incorporated into the network meta-analysis which indicated that TACE + external-beam radiation therapy (EBRT) and drug-eluting beads (DEB) were better than TACE at controllingPD. TACE + EBRT demonstrated their advantages compared to TARE-90Y.However, network meta-analysis comparison showed no significant difference between the corresponding eight treatments with respect to CR, PR, SD and ORR. Moreover, the SUCRA suggested that TACE+EBRT were better than other treatments at treating unresectableHCC.Based on the present results of this network meta-analysis, TACE + EBRT was more effective than the other seven minimally invasive surgeries and therefore it is considered as the optimal treatment for HCC.
Collapse
Affiliation(s)
- Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaodan Li
- Department of Infectious Diseases,The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Ruizhi Ran
- Department of Interal Medicine-Oncology, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Zhihua Xiao
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Hongyue Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqin Song
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Likui Wang
- Savaid Medical School, University of Chinese Academy of Sciences Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Michael S, Achilleos C, Panayiotou T, Strati K. Inflammation Shapes Stem Cells and Stemness during Infection and Beyond. Front Cell Dev Biol 2016; 4:118. [PMID: 27853732 PMCID: PMC5089974 DOI: 10.3389/fcell.2016.00118] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022] Open
Abstract
The outcome of an inflammatory incident can hang in the balance between restoring health and tissue integrity on the one hand, and promoting aberrant tissue homeostasis and adverse outcomes on the other. Both microbial-related and sterile inflammation is a complex response characterized by a range of innate immune cell types, which produce and respond to cytokine mediators and other inflammatory signals. In turn, cells native to the tissue in question can sense these mediators and respond by migrating, proliferating and regenerating the tissue. In this review we will discuss how the specific outcomes of inflammatory incidents are affected by the direct regulation of stem cells and cellular plasticity. While less well appreciated than the effects of inflammatory signals on immune cells and other differentiated cells, the effects are crucial in understanding inflammation and appropriately managing therapeutic interventions.
Collapse
Affiliation(s)
- Stella Michael
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| | - Charis Achilleos
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| | | | - Katerina Strati
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| |
Collapse
|
35
|
Lee KL, Kuo YC, Ho YS, Huang YH. Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 1980; 11:cancers11091334. [PMID: 31505803 PMCID: PMC6769912 DOI: 10.3390/cancers11091334] [Citation(s) in RCA: 161] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is cancer that tested as negative for estrogen receptors (ER), progesterone receptors (PR), and excess human epidermal growth factor receptor 2 (HER2) protein which accounts for 15%–20% of all breast cancer cases. TNBC is considered to be a poorer prognosis than other types of breast cancer, mainly because it involves more aggressive phenotypes that are similar to stem cell–like cancer cells (cancer stem cell, CSC). Thus, targeted treatment of TNBC remains a major challenge in clinical practice. This review article surveys the latest evidence concerning the role of genomic alteration in current TNBC treatment responses, current clinical trials and potential targeting sites, CSC and drug resistance, and potential strategies targeting CSCs in TNBC. Furthermore, the role of insulin-like growth factor 1 receptor (IGF-1R) and nicotinic acetylcholine receptors (nAChR) in stemness expression, chemoresistance, and metastasis in TNBC and their relevance to potential treatments are also discussed and highlighted.
Collapse
Affiliation(s)
- Kha-Liang Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yung-Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|