1
|
Pusev MS, Klein OI, Gessler NN, Bachurina GP, Filippovich SY, Isakova EP, Deryabina YI. Effect of Dihydroquercetin During Long-Last Growth of Yarrowia lipolytica Yeast: Anti-Aging Potential and Hormetic Properties. Int J Mol Sci 2024; 25:12574. [PMID: 39684285 DOI: 10.3390/ijms252312574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Polyphenols are powerful natural antioxidants with numerous biological activities. They change cell membrane permeability, interact with receptors, intracellular enzymes, and cell membrane transporters, and quench reactive oxygen species (ROS). Yarrowia lipolytica yeast, being similar to mammalian cells, can be used as a model to study their survival ability upon long-lasting cultivation, assaying the effect of dihydroquercetin polyphenol (DHQ). The complex assessment of the physiological features of the population assaying cell respiration, survival, ROS detection, and flow cytometry was used. Y. lipolytica showed signs of chronological aging by eight weeks of growth, namely a decrease in the cell number, and size, increased ROS generation, a decrease in colony-forming unit (CFU) and metabolic activity, and decreased respiratory rate and membrane potential. An amount of 150 µM DHQ decreased ROS generation at the 6-week growth stage upon adding an oxidant of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH). Moreover, it decreased CFU at 1-4 weeks of cultivation, inhibited cell metabolic activity of the 24-h-old culture and stimulated that on 14-56 days of growth, induced the cell respiration rate in the 24-h-old culture, and blocked alternative mitochondrial oxidase at growth late stages. DHQ serves as a mild pro-oxidant on the first day of age-stimulating anti-stress protection. In the deep stationary stage, it can act as a powerful antioxidant, stabilizing cell redox status and reducing free radical oxidation in mitochondria. It provides a stable state of population. The hormetic effects of DHQ using lower eukaryotes of Y. lipolytica have been previously discussed, which can be used as a model organism for screening geroprotective compounds of natural origin.
Collapse
Affiliation(s)
- Maxim S Pusev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Olga I Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Natalya N Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Galina P Bachurina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Svetlana Yu Filippovich
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Elena P Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Yulia I Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| |
Collapse
|
2
|
Ling CQ, Liao HX, Wen JR, Nie HY, Zhang LY, Xu FR, Cheng YX, Dong X. Investigation of the Inhibitory Effects of Illicium verum Essential Oil Nanoemulsion on Fusarium proliferatum via Combined Transcriptomics and Metabolomics Analysis. Curr Microbiol 2024; 81:182. [PMID: 38769214 DOI: 10.1007/s00284-024-03724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.
Collapse
Affiliation(s)
- Cui-Qiong Ling
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Li-Yan Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, People's Republic of China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, China.
| |
Collapse
|
3
|
Barbosa C, Santos-Pereira C, Soares I, Martins V, Terra-Matos J, Côrte-Real M, Lúcio M, Oliveira MECDR, Gerós H. Resveratrol-Loaded Lipid Nanocarriers Are Internalized By Endocytosis in Yeast. JOURNAL OF NATURAL PRODUCTS 2019; 82:1240-1249. [PMID: 30964667 DOI: 10.1021/acs.jnatprod.8b01003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 μM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-β-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.
Collapse
Affiliation(s)
- Célia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Inês Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) , University of Trás-os-Montes e Alto Douro , Quinta de Prados , 5000-801 Vila Real , Portugal
| | - Joana Terra-Matos
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Marlene Lúcio
- Centre of Physics (CFUM), Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - M E C D Real Oliveira
- Centre of Physics (CFUM), Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) , University of Trás-os-Montes e Alto Douro , Quinta de Prados , 5000-801 Vila Real , Portugal
| |
Collapse
|
4
|
Dergacheva DI, Mashkova AA, Isakova EP, Gessler NN, Deryabina YI. Influence of Resveratrol and Dihydroquercetin on Physiological and Biochemical Parameters of the Poly-Extremophilic Yeast Yarrowia lipolytica under Temperature Stress. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Identification of Staphylococcus aureus Cellular Pathways Affected by the Stilbenoid Lead Drug SK-03-92 Using a Microarray. Antibiotics (Basel) 2017; 6:antibiotics6030017. [PMID: 28892020 PMCID: PMC5617981 DOI: 10.3390/antibiotics6030017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022] Open
Abstract
The mechanism of action for a new lead stilbene compound coded SK-03-92 with bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) is unknown. To gain insight into the killing process, transcriptional profiling was performed on SK-03-92 treated vs. untreated S. aureus. Fourteen genes were upregulated and 38 genes downregulated by SK-03-92 treatment. Genes involved in sortase A production, protein metabolism, and transcriptional regulation were upregulated, whereas genes encoding transporters, purine synthesis proteins, and a putative two-component system (SACOL2360 (MW2284) and SACOL2361 (MW2285)) were downregulated by SK-03-92 treatment. Quantitative real-time polymerase chain reaction analyses validated upregulation of srtA and tdk as well as downregulation of the MW2284/MW2285 and purine biosynthesis genes in the drug-treated population. A quantitative real-time polymerase chain reaction analysis of MW2284 and MW2285 mutants compared to wild-type cells demonstrated that the srtA gene was upregulated by both putative two-component regulatory gene mutants compared to the wild-type strain. Using a transcription profiling technique, we have identified several cellular pathways regulated by SK-03-92 treatment, including a putative two-component system that may regulate srtA and other genes that could be tied to the SK-03-92 mechanism of action, biofilm formation, and drug persisters.
Collapse
|
6
|
The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain. Curr Microbiol 2017; 74:389-395. [PMID: 28168604 DOI: 10.1007/s00284-016-1191-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/23/2016] [Indexed: 01/12/2023]
Abstract
The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.
Collapse
|
7
|
Big data mining powers fungal research: recent advances in fission yeast systems biology approaches. Curr Genet 2016; 63:427-433. [PMID: 27730285 DOI: 10.1007/s00294-016-0657-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.
Collapse
|
8
|
Wang Z, Shen Y. Antifungal compound honokiol triggers oxidative stress responsive signalling pathway and modulates central carbon metabolism. Mycology 2016; 7:124-133. [PMID: 30123624 PMCID: PMC6059109 DOI: 10.1080/21501203.2016.1221862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
The fast growing evidences have shown that the plant-derived compound honokiol is a promising candidate for treating multiple human diseases, such as inflammation and cancer. However, the mode-of-action (MoA) of honokiol remains largely unclear. Here, we studied the antifungal activity of honokiol in fission yeast model, with the goal of understanding the honokiol's mechanism of action from the molecular level. We found that honokiol can inhibit the yeast growth at a dose-dependent way. Microarray analysis showed that honokiol has wide impacts on the fission yeast transcription levels (in total, 512 genes are up-regulated, and 42 genes are down-regulated). Gene set enrichment analysis indicated that over 45% up-regulated genes belong to the core environmental stress responses category. Moreover, network analysis suggested that there are extensive gene-gene interactions amongst the co-expression gene lists, which can assemble several biofunctionally important modules. It is noteworthy that several key components of central carbon metabolism, such as glucose transporters and metabolic enzymes of glycolysis, are involved in honokiol's MoA. The complexity of the honokiol's MoA displayed in previous studies and this work demonstrates that multiple omics approaches and bioinformatics tools should be applied together to achieve the complete scenario of honokiol's antifungal function.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|