1
|
Matsumoto M, Chien TBC, Machida Y, Matoyama H, Kishihara T, Sato S, Kawato S, Hirono I, Sano M, Kato G. Mycolicibacterium cyprinidarum sp. nov., a rapidly growing species isolated from diseased koi carp, Cyprinus carpio. Int J Syst Evol Microbiol 2024; 74. [PMID: 38809248 DOI: 10.1099/ijsem.0.006404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
A rapidly growing nontuberculous mycobacterium was isolated from diseased koi carp in Niigata, Japan, which was identified as representing a novel Mycolicibacterium species through whole genome sequence analysis. The bacterial isolates (NGTWS0302, NGTWS1803T and NGTWSNA01) were found to belong to the genus Mycolicibacterium through phylogenetic analysis using whole genome sequences of mycobacteria species. The bacterial colony was smooth, moist and non-chromogenic on 1% Ogawa medium at 30 °C. In biochemical characteristic tests, the bacterial isolates showed positive reactions for catalase activity, Tween 80 hydrolysis and tellurite reduction. The isolates were sensitive to 2-4 µg ml-1 ampicillin, kanamycin and rifampicin. Based on these results, we propose a novel Mycolicibacterium species, Mycolicibacterium cyprinidarum sp. nov. The type strain is NGTWS1803T (=JCM 35117T=ATCC TSD-289T).
Collapse
Affiliation(s)
- Megumi Matsumoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tang Belinda Chien Chien
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yuichiro Machida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Hisato Matoyama
- Niigata Prefectural Inland Water Fisheries Experiment Station, 2650 Okawahara, Nagaoka, Niigata, 940-1137, Japan
| | - Tatsuya Kishihara
- Niigata Prefectural Inland Water Fisheries Experiment Station, 2650 Okawahara, Nagaoka, Niigata, 940-1137, Japan
| | - Shoh Sato
- Niigata Prefectural Inland Water Fisheries Experiment Station, 2650 Okawahara, Nagaoka, Niigata, 940-1137, Japan
| | - Satoshi Kawato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Motohiko Sano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Goshi Kato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
2
|
Ahamad N, Gupta S, Parashar D. Using Omics to Study Leprosy, Tuberculosis, and Other Mycobacterial Diseases. Front Cell Infect Microbiol 2022; 12:792617. [PMID: 35281437 PMCID: PMC8908319 DOI: 10.3389/fcimb.2022.792617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria are members of the Actinomycetales order, and they are classified into one family, Mycobacteriaceae. More than 20 mycobacterial species cause disease in humans. The Mycobacterium group, called the Mycobacterium tuberculosis complex (MTBC), has nine closely related species that cause tuberculosis in animals and humans. TB can be detected worldwide and one-fourth of the world's population is contaminated with tuberculosis. According to the WHO, about two million dies from it, and more than nine million people are newly infected with TB each year. Mycobacterium tuberculosis (M. tuberculosis) is the most potential causative agent of tuberculosis and prompts enormous mortality and morbidity worldwide due to the incompletely understood pathogenesis of human tuberculosis. Moreover, modern diagnostic approaches for human tuberculosis are inefficient and have many lacks, while MTBC species can modulate host immune response and escape host immune attacks to sustain in the human body. "Multi-omics" strategies such as genomics, transcriptomics, proteomics, metabolomics, and deep sequencing technologies could be a comprehensive strategy to investigate the pathogenesis of mycobacterial species in humans and offer significant discovery to find out biomarkers at the early stage of disease in the host. Thus, in this review, we attempt to understand an overview of the mission of "omics" approaches in mycobacterial pathogenesis, including tuberculosis, leprosy, and other mycobacterial diseases.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Volokhov DV, Blom J, Amselle M, Delmonte P, Gao Y, Shen Z, Zhang S, Gulland FM, Chizhikov VE, Eisenberg T. Oceanivirga miroungae sp. nov., isolated from oral cavity of northern elephant seal ( Mirounga angustirostris). Int J Syst Evol Microbiol 2020; 70:3037-3048. [PMID: 32223835 DOI: 10.1099/ijsem.0.004127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Two independent strains of a Leptotrichia species (ES3154-GLUT and ES2714_GLU) were isolated from the oral cavity of northern elephant seals (Mirounga angustirostris) that were admitted to The Marine Mammal Centre facilities in California, USA. The strains were isolated from oral swabs by cultivation in PPLO broth supplemented with serum, penicillin and colistin in anaerobic conditions. The strains were Gram-negative, pleomorphic, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile rods/coccobacilli in short chains. The 16S rRNA gene sequence of these strains shared 94.42 % nucleotide similarity with Oceanivirga salmonicida AVG 2115T but demonstrated ≤86.00-92.50 % nucleotide similarity to the 16S rRNA genes of other species of the family Leptotrichiaceae. The genome was sequenced for strain ES3154-GLUT. Average nucleotide identity values between strain ES3154-GLUT and 15 type strain genomes from the family Leptotrichiaceae ranged from 66.74 % vs. Sebaldella termitidis to 73.35 % vs. O. salmonicida. The whole genome phylogeny revealed that the novel species was most closely related to O. salmonicida AVG 2115T. This relationship was also confirmed by nucleotide similarity and multilocus phylogenetic analyses employing various housekeeping genes (partial 23S rRNA, rpoB, rpoC, rpoD, polC, adh, gyrA and gyrB genes). Chemotaxonomic and phenotypical features of strain ES3154-GLUT were in congruence with closely related members of the family Leptotrichiaceae, represented by similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis was capable to clearly discriminate strain ES3154-GLUT from all currently described taxa of the family Leptotrichiaceae. Based on these data, we propose a novel species of the genus Oceanivirga, for which the name Oceanivirga miroungae sp. nov. is proposed with the type strain ES3154-GLUT (=DSM 109740T=CCUG 73653T=ATCC TSD-189T=NCTC 14411T) and one representative strain ES2714_GLU. The G+C content is 26.82 %, genome size is 1 356 983 bp.
Collapse
Affiliation(s)
- Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich Buff Ring 58, 35392, Giessen, Germany
| | - Megan Amselle
- American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110, USA
| | - Pierluigi Delmonte
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Dr., College Park, MD 20740, USA
| | - Yamei Gao
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Zhenyu Shen
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 East Campus Loop, Columbia, MO 65211, USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 East Campus Loop, Columbia, MO 65211, USA
| | - Frances M Gulland
- Wildlife Health Center, University of California, 1089 Veterinary Medicine Dr., Davis, CA 95616, USA
| | - Vladimir E Chizhikov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), Department of Veterinary Medicine, Schubertstrasse 60, 35392, Giessen, Germany
| |
Collapse
|
5
|
Khammadov NI, Aleksandrova NM, Khammadova AV, Shuralev EA. Evaluation of the Effectiveness of Genetic Markers of Mycobacteria for Assessing the Disinfection Quality by Viability Real Time PCR. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00654-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Comprehensive profiling of functional attributes, virulence potential and evolutionary dynamics in mycobacterial secretomes. World J Microbiol Biotechnol 2017; 34:5. [DOI: 10.1007/s11274-017-2388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
|