1
|
Chen C, Chang H, Pang X, Liu Q, Xue L, Yin C. Genetic diversity analysis and conservation strategy recommendations for ex situ conservation of Cupressus chengiana. BMC PLANT BIOLOGY 2025; 25:552. [PMID: 40295907 PMCID: PMC12039293 DOI: 10.1186/s12870-025-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Cupressus chengiana is mainly distributed in the Hengduan Mountains area in China. It is one of the Class II endangered plants, ex situ conservation is often used to the affected C. chengiana population due to the construction of the power station. However, population fragmentation and inbreeding in the ex situ conservation have led to decline in genetic diversity. It is therefore important to clarify the differences in genetic diversity between native populations and ex situ population. RESULTS In this study, we used Genotyping-by-Sequencing to assess the genetic diversity of 30 C. chengiana trees from four populations in the Dadu River Basin, southwest China, including one ex situ conserved population (DK) and three native populations (BW, SA, RJ). The results showed that compared with the native populations, the DK population showed higher genetic diversity. Among the three native populations, SA population may experience inbreeding and has low genetic diversity. The population structure analysis further revealed that the DK population had higher gene flow and lower differentiation than other three populations. For ex situ populations, the primary determinant of genetic diversity is the genetic variation present in the seedlings sourced from natural populations. CONCLUSION These findings support the feasibility of ex situ conservation for C. chengiana conservation. This study provides a scientific foundation for the preservation, management, and restoration of C. chengiana, and would offer valuable insights for the conservation of other endangered plants.
Collapse
Affiliation(s)
- Chaoqun Chen
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - He Chang
- China Renewable Energy Engineering Institute, No. 57A Andingmenwai Street, Beijing, 100120, P. R. China
| | - Xueyong Pang
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
| | - Qinghua Liu
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
| | - Lianfang Xue
- China Renewable Energy Engineering Institute, No. 57A Andingmenwai Street, Beijing, 100120, P. R. China
| | - Chunying Yin
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
| |
Collapse
|
2
|
Du Y, Zhang Y, Lou Z, Wang T. Unrecognized diversity, genetic structuring, and phylogeography of the genus Triplophysa (Cypriniformes: Nemacheilidae) sheds light on two opposite colonization routes during Quaternary glaciation that occurred in the Qilian Mountains. Ecol Evol 2023; 13:e10003. [PMID: 37091569 PMCID: PMC10116023 DOI: 10.1002/ece3.10003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
In recent years, the influence of historical geological and climatic events on the evolution of flora and fauna in the Tibetan Plateau has been a hot research topic. The Qilian Mountain region is one of the most important sources of biodiversity on the Qinghai-Tibet Plateau. Many species existed in the region during the Pleistocene glacial oscillation, and the complex geographical environment provided suitable conditions for the survival of local species. The shrinkage, expansion, and transfer of the distribution range and population size of species have significant effects on genetic diversity and intraspecific differentiation. To reveal the effects of geological uplift and climate oscillation on the evolution of fish populations in the Qilian Mountains, we investigated the genetic structure, phylogenetic relationship, and phylogeographical characteristics of genus Triplophysa species in the Qilian Mountains using the mitochondrial DNA gene (COI), three nuclear genes (RAG1, sRH, and Myh6) and 11 pairs of nuclear microsatellite markers. We collected 11 species of genus Triplophysa living in the Qilian Mountains, among which Triplophysa hsutschouensis and Triplophysa papillosolabiata are widely distributed in the rivers on the northern slope of the Qilian Mountains. There was a high degree of lineage differentiation among species, and the genetic diversity of endemic species was low. The different geographical groups of T. papillosolabiata presented some allogeneic adaptation and differentiation, which was closely related to the changes in the river system. Except for the population expansion event of T. hsutschouensis during the last glacial period of the Qinghai-Tibet Plateau (0.025 MYA), the population sizes of other plateau loach species remained stable without significant population expansion. Starting from the east and west sides of the Qilian Mountains, T. hsutschouensis, and T. papillosolabiata showed two species colonization routes in opposite directions. The geological events of the uplift of the Qinghai-Tibet Plateau and the climatic oscillation of the Quaternary glaciation had a great influence on the genetic structure of the plateau loach in the Qilian Mountains, which promoted the genetic differentiation of the plateau loach and formed some unique new species. The results of this study have important guiding significance for fish habitat protection in the Qilian Mountains.
Collapse
Affiliation(s)
- Yan‐yan Du
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| | - Yan‐ping Zhang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| | - Zhong‐yu Lou
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| | - Tai Wang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| |
Collapse
|
3
|
Nguyen TN, Chen N, Cosgrove EJ, Bowman R, Fitzpatrick JW, Clark AG. Dynamics of reduced genetic diversity in increasingly fragmented populations of Florida scrub jays, Aphelocoma coerulescens. Evol Appl 2022; 15:1018-1027. [PMID: 35782006 PMCID: PMC9234620 DOI: 10.1111/eva.13421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding the genomic consequences of population decline is important for predicting species' vulnerability to intensifying global change. Empirical information about genomic changes in populations in the early stages of decline, especially for those still experiencing immigration, remains scarce. We used 7834 autosomal SNPs and demographic data for 288 Florida scrub jays (Aphelocoma coerulescens; FSJ) sampled in 2000 and 2008 to compare levels of genetic diversity, inbreeding, relatedness, and lengths of runs of homozygosity (ROH) between two subpopulations within dispersal distance of one another but have experienced contrasting demographic trajectories. At Archbold Biological Station (ABS), the FSJ population has been stable because of consistent habitat protection and management, while at nearby Placid Lakes Estates (PLE), the population declined precipitously due to suburban development. By the onset of our sampling in 2000, birds in PLE were already less heterozygous, more inbred, and on average more related than birds in ABS. No significant changes occurred in heterozygosity or inbreeding across the 8-year sampling interval, but average relatedness among individuals decreased in PLE, thus by 2008 average relatedness did not differ between sites. PLE harbored a similar proportion of short ROH but a greater proportion of long ROH than ABS, suggesting one continuous population of shared demographic history in the past, which is now experiencing more recent inbreeding. These results broadly uphold the predictions of simple population genetic models based on inferred effective population sizes and rates of immigration. Our study highlights how, in just a few generations, formerly continuous populations can diverge in heterozygosity and levels of inbreeding with severe local population decline despite ongoing gene flow.
Collapse
Affiliation(s)
- Tram N. Nguyen
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Cornell Lab of OrnithologyIthacaNew YorkUSA
| | - Nancy Chen
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Elissa J. Cosgrove
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Reed Bowman
- Avian Ecology LabArchbold Biological StationFloridaUSA
| | - John W. Fitzpatrick
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Cornell Lab of OrnithologyIthacaNew YorkUSA
| | - Andrew G. Clark
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
4
|
The Centre–Periphery Model, a Possible Explanation for the Distribution of Some Pinus spp. in the Sierra Madre Occidental, Mexico. FORESTS 2022. [DOI: 10.3390/f13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic diversity is key to survival of species. In evolutionary ecology, the general centre–periphery theory suggests that populations of species located at the margins of their distribution areas display less genetic diversity and greater genetic differentiation than populations from central areas. The aim of this study was to evaluate the genetic diversity and differentiation in six of the main pine species of the Sierra Madre Occidental (northern Mexico). The species considered were Pinus arizonica, P. cembroides, P. durangensis, Pinus engelmannii, P. herrerae and P. leiophylla, which occur at the margins and centre of the geographic distribution. We sampled needles from 2799 individuals belonging to 80 populations of the six species. We analysed amplified fragment length polymorphisms (AFLPs) to estimate diversity and rarity indexes, applied Principal Coordinate Analysis (PCoA), and used the Kruskal–Wallis test to detect genetic differences. Finally, we calculated Spearman’s correlation for association between variables. The general centre–periphery model only explained the traits in P. herrerae. The elevation gradient was an important factor that influenced genetic diversity. However, for elevation as partitioning criterion, most populations showed a central distribution. This information may be useful for establishing seed collections of priority individuals for maintenance in germplasm banks and their subsequent sustainable use.
Collapse
|
5
|
Nakabayashi A, Yamakita T, Nakamura T, Aizawa H, Kitano YF, Iguchi A, Yamano H, Nagai S, Agostini S, Teshima KM, Yasuda N. The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci Rep 2019; 9:1892. [PMID: 30760801 PMCID: PMC6374466 DOI: 10.1038/s41598-018-38333-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022] Open
Abstract
As corals in tropical regions are threatened by increasing water temperatures, poleward range expansion of reef-building corals has been observed, and temperate regions are expected to serve as refugia in the face of climate change. To elucidate the important indicators of the sustainability of coral populations, we examined the genetic diversity and connectivity of the common reef-building coral Acropora hyacinthus along the Kuroshio Current, including recently expanded (<50 years) populations. Among the three cryptic lineages found, only one was distributed in temperate regions, which could indicate the presence of Kuroshio-associated larval dispersal barriers between temperate and subtropical regions, as shown by oceanographic simulations as well as differences in environmental factors. The level of genetic diversity gradually decreased towards the edge of the species distribution. This study provides an example of the reduced genetic diversity in recently expanded marginal populations, thus indicating the possible vulnerability of these populations to environmental changes. This finding underpins the importance of assessing the genetic diversity of newly colonized populations associated with climate change for conservation purposes. In addition, this study highlights the importance of pre-existing temperate regions as coral refugia, which has been rather underappreciated in local coastal management.
Collapse
Affiliation(s)
- Aki Nakabayashi
- Department of Marine Biology and Environmental Sciences, University of Miyazaki, Faculty of Agriculture, Gakuen- kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Takehisa Yamakita
- R&D Center for Submarine Resource, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Takashi Nakamura
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, O-okayama 2-12-1-W8-5, Meguro-ku, Tokyo, 152-8552, Japan
| | - Hiroaki Aizawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, O-okayama 2-12-1-W8-5, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuko F Kitano
- Organization for Promotion of Tenure Track, University of Miyazaki, Faculty of Agriculture, Gakuen- kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.,Iriomote station, Tropical Biosphere Research Center, University of Ryukyus, 870 Uehara, Taketomi, Okinawa, 907-1541, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-shi, Ibaraki, 305-8506, Japan
| | - Akira Iguchi
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa, 905-2192, Japan.,Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Hiroya Yamano
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-shi, Ibaraki, 305-8506, Japan
| | - Satoshi Nagai
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka, 415-0025, Japan
| | - Kosuke M Teshima
- Department of Biology, Faculty of Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nina Yasuda
- Organization for Promotion of Tenure Track, University of Miyazaki, Faculty of Agriculture, Gakuen- kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.
| |
Collapse
|
6
|
Yang X, Li L, Jiang X, Wang W, Cai X, Su J, Wang F, Lu BR. Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) transgene alters phenology and fitness of crop-wild hybrid offspring. Sci Rep 2017; 7:6834. [PMID: 28754953 PMCID: PMC5533792 DOI: 10.1038/s41598-017-07089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022] Open
Abstract
Genetically engineered (GE) rice endogenous epsps (5-enolpyruvoylshikimate-3-phosphate synthase) gene overexpressing EPSPS can increase glyphosate herbicide-resistance of cultivated rice. This type of epsps transgene can enhance the fecundity of rice crop-weed hybrid offspring in the absence of glyphosate, stimulating great concerns over undesired environmental impacts of transgene flow to populations of wild relatives. Here, we report the substantial alteration of phenology and fitness traits in F1-F3 crop-wild hybrid descendants derived from crosses between an epsps GE rice line and two endangered wild rice (Oryza rufipogon) populations, based on the common-garden field experiments. Under the glyphosate-free condition, transgenic hybrid lineages showed significantly earlier tillering and flowering, as well as increased fecundity and overwintering survival/regeneration abilities. In addition, a negative correlation was observed between the contents of endogenous EPSPS of wild, weedy, and cultivated rice parents and fitness differences caused by the incorporation of the epsps transgene. Namely, a lower level of endogenous EPSPS in the transgene-recipient populations displayed a more pronounced enhancement in fitness. The altered phenology and enhanced fitness of crop-wild hybrid offspring by the epsps transgene may cause unwanted environmental consequences when this type of glyphosate-resistance transgene introgressed into wild rice populations through gene flow.
Collapse
Affiliation(s)
- Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Lei Li
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Xiaoqi Jiang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Wei Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Xingxing Cai
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| |
Collapse
|
7
|
Genetic diversity and population structure of Korean wild soybean ( Glycine soja Sieb. and Zucc.) inferred from microsatellite markers. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|