1
|
Kajimoto S, Ohashi M, Hagiwara Y, Takahashi D, Mihara Y, Motoyama T, Ito S, Nakano S. Enzymatic Conjugation of Modified RNA Fragments by Ancestral RNA Ligase AncT4_2. Appl Environ Microbiol 2022; 88:e0167922. [PMID: 36416557 PMCID: PMC9746290 DOI: 10.1128/aem.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide therapeutics have great potential as a next-generation approach to treating intractable diseases. Large quantities of modified DNA/RNA containing xenobiotic nucleic acids (XNAs) must be synthesized before clinical application. In this study, the ancestral RNA ligase AncT4_2 was designed by ancestral sequence reconstruction (ASR) to perform the conjugation reaction of modified RNA fragments. AncT4_2 had superior properties to native RNA ligase 2 from T4 phage (T4Rnl2), including high productivity, a >2.5-fold-higher turnover number, and >10°C higher thermostability. One remarkable point is the broad substrate selectivity of AncT4_2; the activity of AncT4_2 toward 17 of the modified RNA fragments was higher than that of T4Rnl2. The activity was estimated by measuring the conjugation reaction of two RNA strands, 3'-OH (12 bp) and 5'-PO4 (12 bp), in which the terminal and penultimate positions of the 3'-OH fragment and the first and second positions of the 5'-PO4 fragment were substituted by 2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl, and 2'-H, respectively. The enzymatic properties of AncT4_2 allowed the enzyme to conjugate large quantities of double-stranded RNA coding for patisiran (>400 μM level), which was formed by four RNA fragments containing 2'-OMe-substituted nucleic acids. Structural analysis of modeled AncT4_2 suggested that protein dynamics were changed by mutation to Gly or indel during ASR and that this may positively impact the conjugation of modified RNA fragments with the enzyme. AncT4_2 is expected to be a key biocatalyst in synthesizing RNA therapeutics by an enzymatic reaction. IMPORTANCE RNA therapeutics is one of the next-generation medicines for treating various diseases. Our designed ancestral RNA ligase AncT4_2 exhibited excellent enzymatic properties, such as high thermal stability, productivity, specific activity, and broad substrate selectivity compared to native enzymes. These advantages create the potential for AncT4_2 to be applied in conjugating the modified RNA fragments containing various xenobiotic nucleic acids. In addition, patisiran, a known polyneuropathy therapeutic, could be synthesized from four fragmented oligonucleotides at a preparative scale. Taken together, these findings indicate AncT4_2 could open the door to synthesizing RNA therapeutics by enzymatic reaction at large-scale production.
Collapse
Affiliation(s)
- Shohei Kajimoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Miwa Ohashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yusuke Hagiwara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Daisuke Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yasuhiro Mihara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
2
|
Luo J, Chen H, An R, Liang X. Efficient preparation of AppDNA/AppRNA by T4 DNA ligase aided by a DNA involving mismatched mini-hairpin structure at its 3′ side. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| |
Collapse
|
3
|
Osman EA, Alladin-Mustan BS, Hales SC, Matharu GK, Gibbs JM. Enhanced mismatch selectivity of T4 DNA ligase far above the probe: Target duplex dissociation temperature. Biopolymers 2020; 112:e23393. [PMID: 32896905 DOI: 10.1002/bip.23393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3'-terminus of the ligating strand using short ligation probes (9-mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5'-phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sarah C Hales
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gunwant K Matharu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Zhu J, Wang J, Cheng K, Chen H, An R, Zhang Y, Komiyama M, Liang X. Effective Characterization of DNA Ligation Kinetics by High-Resolution Melting Analysis. Chembiochem 2019; 21:785-788. [PMID: 31592561 DOI: 10.1002/cbic.201900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Indexed: 12/31/2022]
Abstract
High-resolution melting (HRM) analysis has been improved and applied for the first time to quantitative analysis of enzymatic reactions. By using the relative ratios of peak intensities of substrates and products, the quantitativity of conventional HRM analysis has been improved to allow detailed kinetic analysis. As an example, the ligation of sticky ends through the action of T4 DNA ligase has been kinetically analyzed, with comprehensive data on substrate specificity and other properties having been obtained. For the first time, the kinetic parameters (kobs and apparent Km ) of sticky-end ligation were obtained for both fully matched and mismatched sticky ends. The effect of ATP concentration on sticky-end ligation was also investigated. The improved HRM method should also be applicable to versatile DNA-transforming enzymes, because the only requirement is that the products have Tm values different enough from the substrates.
Collapse
Affiliation(s)
- Jianming Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,CAS Key laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Kai Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, P. R. China
| |
Collapse
|
5
|
Oda Y, Chiba J, Kurosaki F, Yamade Y, Inouye M. Additive‐Free Enzymatic Phosphorylation and Ligation of Artificial Oligonucleotides with C‐Nucleosides at the Reaction Points. Chembiochem 2019; 20:1945-1952. [DOI: 10.1002/cbic.201900217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Yutaro Oda
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Junya Chiba
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Fumihiro Kurosaki
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Yusuke Yamade
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
6
|
Bauer RJ, Jurkiw TJ, Evans TC, Lohman GJS. Rapid Time Scale Analysis of T4 DNA Ligase-DNA Binding. Biochemistry 2017; 56:1117-1129. [PMID: 28165732 DOI: 10.1021/acs.biochem.6b01261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA ligases, essential to both in vivo genome integrity and in vitro molecular biology, catalyze phosphodiester bond formation between adjacent 3'-OH and 5'-phosphorylated termini in dsDNA. This reaction requires enzyme self-adenylylation, using ATP or NAD+ as a cofactor, and AMP release concomitant with phosphodiester bond formation. In this study, we present the first fast time scale binding kinetics of T4 DNA ligase to both nicked substrate DNA (nDNA) and product-equivalent non-nicked dsDNA, as well as binding and release kinetics of AMP. The described assays utilized a fluorescein-dT labeled DNA substrate as a reporter for ligase·DNA interactions via stopped-flow fluorescence spectroscopy. The analysis revealed that binding to nDNA by the active adenylylated ligase occurs in two steps, an initial rapid association equilibrium followed by a transition to a second bound state prior to catalysis. Furthermore, the ligase binds and dissociates from nicked and nonsubstrate dsDNA rapidly with initial association affinities on the order of 100 nM regardless of enzyme adenylylation state. DNA binding occurs through a two-step mechanism in all cases, confirming prior proposals of transient binding followed by a transition to a productive ligase·nDNA (Lig·nDNA) conformation but suggesting that weaker nonproductive "closed" complexes are formed as well. These observations demonstrate the mechanistic underpinnings of competitive inhibition by rapid binding of nonsubstrate DNA, and of substrate inhibition by blocking of the self-adenylylation reaction through nick binding by deadenylylated ligase. Our analysis further reveals that product release is not the rate-determining step in turnover.
Collapse
Affiliation(s)
- Robert J Bauer
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| | - Thomas J Jurkiw
- University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Thomas C Evans
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| | - Gregory J S Lohman
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| |
Collapse
|