1
|
Zhang Q, Zheng J, Sun H, Zheng J, Ma Y, Ji Q, Chen D, Tang Z, Zhang J, He Y, Song T. The Notch Signaling Pathway: A Potential Target for Mental Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05034-w. [PMID: 40372672 DOI: 10.1007/s12035-025-05034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
The highly conserved Notch signaling pathway plays a critical role in cell fate determination during metazoan development through cell-to-cell communication. The classical pathway consists of Notch receptors, ligands, intracellular effectors, DNA-binding proteins, and other regulatory molecules. Recent research has highlighted its involvement in the pathogenesis of several diseases. In autism, bipolar disorder, and schizophrenia, the Notch signaling pathway is implicated in key processes such as neuronal development and synaptic plasticity. Furthermore, it has been shown to play significant roles in other mental health conditions, including anxiety, depression, post-traumatic stress disorder, and neurocognitive disorders. However, the precise mechanisms underlying the contribution of Notch to these conditions remain poorly understood. This review examines the current understanding of the Notch signaling pathway in mental disorders, highlighting its role in their pathophysiology and summarizing therapeutic strategies aimed at modulating this pathway to improve mental health outcomes.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jingxuan Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongqin Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Engineering Research Center of Key Technologies for Industrial Development of Dendrobium in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Zhang YH, Wang T, Li YF, Deng YN, He XL, Wang LJ. N-acetylcysteine improves autism-like behavior by recovering autophagic deficiency and decreasing Notch-1/Hes-1 pathway activity. Exp Biol Med (Maywood) 2023; 248:966-978. [PMID: 37377100 PMCID: PMC10525405 DOI: 10.1177/15353702231179924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/16/2023] [Indexed: 06/29/2023] Open
Abstract
N-acetylcysteine (NAC) has been reported to improve social interaction behavior, irritability, self-injury, and anxiety-like behavior in autism. However, the molecular mechanism underlying the therapeutic roles of NAC in autism remains unknown. This study mainly aimed to investigate the therapeutic effect of NAC on valproic acid (VPA)-induced autism model and the underlying mechanisms. Our results showed that NAC ameliorated the deficits in sociability and the anxiety- and repetitive-like behaviors displayed by VPA-exposed rats. In addition, VPA exposure induced autophagic deficiency and enhanced Notch-1/Hes-1 pathway activity based on lowered Beclin-1 and LC3B levels, while increased expression of p62, Notch-1, and Hes-1 expression at the protein level. However, NAC recovered VPA-induced autophagic deficiency and reduced Notch-1/Hes-1 pathway activity in a VPA-exposed autism rat model and SH-SY5Y neural cells. The present results demonstrated that NAC improves autism-like behavioral abnormalities by inactivating Notch-1/Hes-1 signaling pathway and recovering autophagic deficiency. Taken together, this study helps to elucidate a novel molecular mechanism that underlies the therapeutic actions of NAC in autism and suggests its potential to ameliorate behavioral abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ying-Hua Zhang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ting Wang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Fang Li
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Nan Deng
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue-Ling He
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li-Jun Wang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
3
|
Chen WX, Liu B, Zhou L, Xiong X, Fu J, Huang ZF, Tan T, Tang M, Wang J, Tang YP. De novo mutations within metabolism networks of amino acid/protein/energy in Chinese autistic children with intellectual disability. Hum Genomics 2022; 16:52. [PMID: 36320054 PMCID: PMC9623983 DOI: 10.1186/s40246-022-00427-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is often accompanied by intellectual disability (ID). Despite extensive studies, however, the genetic basis for this comorbidity is still not clear. In this study, we tried to develop an analyzing pipeline for de novo mutations and possible pathways related to ID phenotype in ASD. Whole-exome sequencing (WES) was performed to screen de novo mutations and candidate genes in 79 ASD children together with their parents (trios). The de novo altering genes and relative pathways which were associated with ID phenotype were analyzed. The connection nodes (genes) of above pathways were selected, and the diagnostic value of these selected genes for ID phenotype in the study population was also evaluated. RESULTS We identified 89 de novo mutant genes, of which 34 genes were previously reported to be associated with ASD, including double hits in the EGF repeats of NOTCH1 gene (p.V999M and p.S1027L). Interestingly, of these 34 genes, 22 may directly affect intelligence quotient (IQ). Further analyses revealed that these IQ-related genes were enriched in protein synthesis, energy metabolism, and amino acid metabolism, and at least 9 genes (CACNA1A, ALG9, PALM2, MGAT4A, PCK2, PLEKHA1, PSME3, ADI1, and TLE3) were involved in all these three pathways. Seven patients who harbored these gene mutations showed a high prevalence of a low IQ score (< 70), a non-verbal language, and an early diagnostic age (< 4 years). Furthermore, our panel of these 9 genes reached a 10.2% diagnostic rate (5/49) in early diagnostic patients with a low IQ score and also reached a 10% diagnostic yield in those with both a low IQ score and non-verbal language (4/40). CONCLUSION We found some new genetic disposition for ASD accompanied with intellectual disability in this study. Our results may be helpful for etiologic research and early diagnoses of intellectual disability in ASD. Larger population studies and further mechanism studies are warranted.
Collapse
Affiliation(s)
- Wen-Xiong Chen
- grid.410737.60000 0000 8653 1072The Assessment and Intervention Center for Autistic Children, Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Bin Liu
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China ,grid.258164.c0000 0004 1790 3548Department of Biobank, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, 518102 Guangdong China
| | - Lijie Zhou
- grid.412719.8Department of Pediatric Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiaoli Xiong
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
| | - Jie Fu
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
| | - Zhi-Fang Huang
- grid.410737.60000 0000 8653 1072The Assessment and Intervention Center for Autistic Children, Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Ting Tan
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
| | - Mingxi Tang
- grid.488387.8Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jun Wang
- grid.412719.8Department of Pediatric Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ya-Ping Tang
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China ,grid.412719.8Department of Pediatric Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| |
Collapse
|
4
|
Identification of the Novel Methylated Genes' Signature to Predict Prognosis in INRG High-Risk Neuroblastomas. JOURNAL OF ONCOLOGY 2021; 2021:1615201. [PMID: 34557229 PMCID: PMC8455188 DOI: 10.1155/2021/1615201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastomas are the most frequent extracranial pediatric solid tumors. The prognosis of children with high-risk neuroblastomas has remained poor in the past decade. A powerful signature is required to identify factors associated with prognosis and improved treatment selection. Here, we identified a strong methylation signature that favored the earlier diagnosis of neuroblastoma in patients. METHODS Gene methylation (GM) data of neuroblastoma patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were analyzed using a multivariate Cox regression analysis (MCRA) and univariate Cox proportional hazards regression analysis (UCPHRA). RESULTS The methylated genes' signature consisting of eight genes (NBEA, DDX28, TMED8, LOC151174, EFNB2, GHRHR, MIMT1, and SLC29A3) was selected. The signature divided patients into low- and high-risk categories, with statistically significant survival rates (median survival time: 25.08 vs. >128.80 months, log-rank test, P < 0.001) in the training group, and the validation of the signature's risk stratification ability was carried out in the test group (log-rank test, P < 0.01, median survival time: 30.48 vs. >120.36 months). The methylated genes' signature was found to be an independent predictive factor for neuroblastoma by MCRA. Functional enrichment analysis suggested that these methylated genes were related to butanoate metabolism, beta-alanine metabolism, and glutamate metabolism, all playing different significant roles in the process of energy metabolism in neuroblastomas. CONCLUSIONS The set of eight methylated genes could be used as a new predictive and prognostic signature for patients with INRG high-risk neuroblastomas, thus assisting in treatment, drug development, and predicting survival.
Collapse
|
5
|
Boulin T, Itani O, El Mouridi S, Leclercq-Blondel A, Gendrel M, Macnamara E, Soldatos A, Murphy JL, Gorman MP, Lindsey A, Shimada S, Turner D, Silverman GA, Baldridge D, Malicdan MC, Schedl T, Pak SC. Functional analysis of a de novo variant in the neurodevelopment and generalized epilepsy disease gene NBEA. Mol Genet Metab 2021; 134:195-202. [PMID: 34412939 PMCID: PMC10626981 DOI: 10.1016/j.ymgme.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023]
Abstract
Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.
Collapse
Affiliation(s)
- Thomas Boulin
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Omar Itani
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Sonia El Mouridi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Alice Leclercq-Blondel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Marie Gendrel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France; Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris 75005, France
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Soldatos
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Murphy
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Gorman
- Department of Neurology, Neuroimmunology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anika Lindsey
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Shino Shimada
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darian Turner
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - May C Malicdan
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tim Schedl
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Stephen C Pak
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
6
|
Sanyoura M, Lundgrin EL, Subramanian HP, Yu M, Sodadasi P, Greeley SAW, MacLeish S, Del Gaudio D. Novel compound heterozygous LRBA deletions in a 6-month-old with neonatal diabetes. Diabetes Res Clin Pract 2021; 175:108798. [PMID: 33845048 PMCID: PMC11056189 DOI: 10.1016/j.diabres.2021.108798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
We report a 6-month-old boy with antibody-positive insulin-dependent diabetes mellitus. Sequencing identified compound heterozygous deletions of exon 5 and exons 36-37 in LRBA. At three years, he has yet to exhibit any other immune symptoms. Genetic testing of LRBA is warranted in patients with neonatal diabetes, even without immune dysregulation.
Collapse
Affiliation(s)
- May Sanyoura
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Erika L Lundgrin
- Division of Pediatric Endocrinology and Metabolism, University Hospitals Rainbow Babies & Children's Hospital, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hari Prasanna Subramanian
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Min Yu
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Priscilla Sodadasi
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL 60637, USA
| | - Sarah MacLeish
- Division of Pediatric Endocrinology and Metabolism, University Hospitals Rainbow Babies & Children's Hospital, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Daniela Del Gaudio
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Miura S, Shimojo T, Morikawa T, Kamada T, Uchiyama Y, Kurata S, Fujioka R, Shibata H. Familial paroxysmal kinesigenic dyskinesia with a novel missense variant (Arg2866Trp) in NBEA. J Hum Genet 2021; 66:805-811. [PMID: 33692494 DOI: 10.1038/s10038-021-00914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder characterized by episodic involuntary movement attacks triggered by sudden movements, acceleration, or intention to move. We ascertained two Japanese familial cases with PKD. The proband is a 22-year-old woman who had noted sudden brief (<30 s) of involuntary movements provoked by kinesigenic trigger such as starting to run, getting on a train, picking up a telephone receiver and so on at the age of 14. Interictal brain single photon emission computed tomography (SPECT) showed hyperperfusion in the left thalamus. A 46-year-old woman, the mother of the proband was also suffering from brief attacks triggered by starting to run in her high school days. On neurological examination, both showed no abnormality. Whole exome sequencing combined with rigorous filtering revealed two heterozygous nonsynonymous variants (NM_001447: c.8976G > C [p.Gln2992His] in FAT2 and NM_015678: c.8596C > T [p.Arg2866Trp] in NBEA). Real time quantitative PCR analysis of Nbea mRNA levels in the developing rat brain revealed peak at postnatal day 28 and decline at postnatal day 56. This result might match the most common clinical course of PKD from the point of view of the most common age at remission. NBEA has been reported to be responsible for neurodevelopmental disease accompanied by epilepsy. We concluded the variant in NBEA most likely to be responsible for our familial cases of PKD.
Collapse
Affiliation(s)
- Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan.,Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomofumi Shimojo
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuya Morikawa
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Kamada
- Department of Neurology, Fukuoka Sanno Hospital, Fukuoka, 814-0001, Japan
| | - Yusuke Uchiyama
- Department of Radiology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Seiji Kurata
- Department of Radiology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Ryuta Fujioka
- Department of Food and Nutrition, Beppu University Junior College, Beppu, 874-8501, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Enhanced LTP of population spikes in the dentate gyrus of mice haploinsufficient for neurobeachin. Sci Rep 2020; 10:16058. [PMID: 32994505 PMCID: PMC7524738 DOI: 10.1038/s41598-020-72925-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Deletion of the autism candidate molecule neurobeachin (Nbea), a large PH-BEACH-domain containing neuronal protein, has been shown to affect synaptic function by interfering with neurotransmitter receptor targeting and dendritic spine formation. Previous analysis of mice lacking one allele of the Nbea gene identified impaired spatial learning and memory in addition to altered autism-related behaviours. However, no functional data from living heterozygous Nbea mice (Nbea+/−) are available to corroborate the behavioural phenotype. Here, we explored the consequences of Nbea haploinsufficiency on excitation/inhibition balance and synaptic plasticity in the intact hippocampal dentate gyrus of Nbea+/− animals in vivo by electrophysiological recordings. Based on field potential recordings, we show that Nbea+/− mice display enhanced LTP of the granule cell population spike, but no differences in basal synaptic transmission, synapse numbers, short-term plasticity, or network inhibition. These data indicate that Nbea haploinsufficiency causes remarkably specific alterations to granule cell excitability in vivo, which may contribute to the behavioural abnormalities in Nbea+/− mice and to related symptoms in patients.
Collapse
|
9
|
Salazar JL, Yang SA, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020; 10:biom10070985. [PMID: 32630239 PMCID: PMC7408554 DOI: 10.3390/biom10070985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in Drosophila, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic ‘neurogenic’ phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including Drosophila and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in C elegans, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, BCM, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8119
| |
Collapse
|
10
|
Zhang Y, Xiang Z, Jia Y, He X, Wang L, Cui W. The Notch signaling pathway inhibitor Dapt alleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109644. [PMID: 31075347 DOI: 10.1016/j.pnpbp.2019.109644] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorders (ASDs) comprise a number of heterogeneous neurodevelopmental diseases. Recent studies suggest that the abnormal transmission of neural signaling pathways is associated with the pathogenesis of autism. The aim of this study was to identify a link between the Notch signaling pathway and the pathogenesis of autism. In this study, we demonstrated that prenatal exposure to valproic acid (VPA) resulted in autistic-like behaviors in offspring rats and that the expression of the Notch signaling pathway-related molecules Notch1, Jagged1, Notch intracellular domain (NICD) and Hes1 increased in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA rats compared to those of controls. However, inhibiting the Notch pathway with (3,5-Difluorophenacetyl)-L-alanyl-S-phenylglycine-2-butyl Ester (Dapt) reduced the overexpression of Notch pathway-related molecules in offspring rats. Notably, Dapt improved autistic-like behaviors in a VPA-exposed rat model of autism. Furthermore, we investigated whether Dapt improved autistic-like behavior in a VPA rat model by regulating autophagy and affecting the morphology of dendritic spines. We found that the expression of the autophagy-related proteins Beclin 1, LC3B and phospho-p62 in the PFC, HC and CB of VPA model rats increased after Notch signal activation and was inhibited by Dapt compared to those of controls. Moreover, postsynaptic density-95 (PSD-95) protein expression also increased significantly compared to that of VPA model rats. The density of dendritic spines decreased in the PFC of VPA rats treated with Dapt compared to that of VPA model rats. Our present results suggest that VPA induces an abnormal activation of the Notch signaling pathway. The inhibition of excessive Notch signaling activation by Dapt can alleviate autistic-like behaviors in VPA rats. Our working model suggests that the Notch signaling pathway participates in the pathogenesis of autism by regulating autophagy and affecting dendritic spine growth. The results of this study may help to elucidate the mechanism underlying autism and provide a potential strategy for treating autism.
Collapse
Affiliation(s)
- Yinghua Zhang
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan 453003, PR China.
| | - Zhe Xiang
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan 453003, PR China
| | - Yunjie Jia
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan 453003, PR China
| | - Xueling He
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan 453003, PR China
| | - Lijun Wang
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan 453003, PR China
| | - Weigang Cui
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan 453003, PR China
| |
Collapse
|
11
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
12
|
Yurchenko AA, Deniskova TE, Yudin NS, Dotsev AV, Khamiruev TN, Selionova MI, Egorov SV, Reyer H, Wimmers K, Brem G, Zinovieva NA, Larkin DM. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics 2019; 20:294. [PMID: 32039702 PMCID: PMC7227232 DOI: 10.1186/s12864-019-5537-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Domestication and centuries of selective breeding have changed genomes of sheep breeds to respond to environmental challenges and human needs. The genomes of local breeds, therefore, are valuable sources of genomic variants to be used to understand mechanisms of response to adaptation and artificial selection. As a step toward this we performed a high-density genotyping and comprehensive scans for signatures of selection in the genomes from 15 local sheep breeds reared across Russia. Results Results demonstrated that the genomes of Russian sheep breeds contain multiple regions under putative selection. More than 50% of these regions matched with intervals identified in previous scans for selective sweeps in sheep genomes. These regions contain well-known candidate genes related to morphology, adaptation, and domestication (e.g., KITLG, KIT, MITF, and MC1R), wool quality and quantity (e.g., DSG@, DSC@, and KRT@), growth and feed intake (e.g., HOXA@, HOXC@, LCORL, NCAPG, LAP3, and CCSER1), reproduction (e.g., CMTM6, HTRA1, GNAQ, UBQLN1, and IFT88), and milk-related traits (e.g., ABCG2, SPP1, ACSS1, and ACSS2). In addition, multiple genes that are putatively related to environmental adaptations were top-ranked in selected intervals (e.g., EGFR, HSPH1, NMUR1, EDNRB, PRL, TSHR, and ADAMTS5). Moreover, we observed that multiple key genes involved in human hereditary sensory and autonomic neuropathies, and genetic disorders accompanied with an inability to feel pain and environmental temperatures, were top-ranked in multiple or individual sheep breeds from Russia pointing to a possible mechanism of adaptation to harsh climatic conditions. Conclusions Our work represents the first comprehensive scan for signatures of selection in genomes of local sheep breeds from the Russian Federation of both European and Asian origins. We confirmed that the genomes of Russian sheep contain previously identified signatures of selection, demonstrating the robustness of our integrative approach. Multiple novel signatures of selection were found near genes which could be related to adaptation to the harsh environments of Russia. Our study forms a basis for future work on using Russian sheep genomes to spot specific genetic variants or haplotypes to be used in efforts on developing next-generation highly productive breeds, better suited to diverse Eurasian environments. Electronic supplementary material The online version of this article (10.1186/s12864-019-5537-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Tatiana E Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia
| | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia
| | - Timur N Khamiruev
- Research Institute of Veterinary Medicine of Eastern Siberia, The Branch of the Siberian Federal Scientific Center for Agrobiotechnologies of the Russian Academy of Sciences, Chita, Russia
| | - Marina I Selionova
- All-Russian Research Institute of Sheep and Goat Breeding - branch of the Federal State Budgetary Scientific Institution North Caucasian Agrarian Center, Stavropol, 355017, Russia
| | - Sergey V Egorov
- Siberian Research Institute of Animal Husbandry, Krasnoobsk, Russia
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia.
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia. .,Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
13
|
Martínez Jaramillo C, Trujillo-Vargas CM. LRBA in the endomembrane system. COLOMBIA MEDICA (CALI, COLOMBIA) 2018; 49:236-243. [PMID: 30410199 PMCID: PMC6220489 DOI: 10.25100/cm.v49i2.3802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bi-allelic mutations in LRBA (from Lipopolysaccharide-responsive and beige-like anchor protein) result in a primary immunodeficiency with clinical features ranging from hypogammaglobulinemia and lymphoproliferative syndrome to inflammatory bowel disease and heterogeneous autoimmune manifestations. LRBA deficiency has been shown to affect vesicular trafficking, autophagy and apoptosis, which may lead to alterations of several molecules and processes that play key roles for immunity. In this review, we will discuss the relationship of LRBA with the endovesicular system in the context of receptor trafficking, autophagy and apoptosis. Since these mechanisms of homeostasis are inherent to all living cells and not only limited to the immune system and also, because they are involved in physiological as well as pathological processes such as embryogenesis or tumoral transformation, we envisage advancing in the identification of potential pharmacological agents to manipulate these processes.
Collapse
Affiliation(s)
- Catalina Martínez Jaramillo
- Grupo de Inmunodeficiencias primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Claudia M Trujillo-Vargas
- Grupo de Inmunodeficiencias primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
14
|
The Possible Role of Neurobeachin in Extinction of Contextual Fear Memory. Sci Rep 2018; 8:13752. [PMID: 30213954 PMCID: PMC6137154 DOI: 10.1038/s41598-018-30589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022] Open
Abstract
Established fear memory becomes vulnerable to disruption after memory retrieval and extinction; this labile state is critical for inhibiting the return of fear memory. However, the labile state has a very narrow time window after retrieval, and underlying molecular mechanisms are not well known. To that end, we isolated the hippocampus immediately after fear memory retrieval and performed proteomics. We identified Neurobeachin (NBEA), an autism-related regulator of synaptic protein trafficking, to be upregulated after contextual fear memory retrieval. NBEA protein expression was rapid and transient after fear memory retrieval at the synapse. Nbea mRNA was enriched at the synapses, and the rapid induction of NBEA expression was blocked by inhibition of the mammalian target of rapamycin (mTOR)-dependent signaling pathway. Mice with cornu ammonis 1 (CA1)-specific Nbea shRNA knockdown showed normal fear acquisition and contextual fear memory but impaired extinction, suggesting an important role of Nbea in fear memory extinction processes. Consistently, Nbea heterozygotes showed normal fear acquisition and fear memory recall but showed impairment in extinction. Our data suggest that NBEA is necessary either for induction of memory lability or for the physiological process of memory extinction.
Collapse
|
15
|
Repetto D, Brockhaus J, Rhee HJ, Lee C, Kilimann MW, Rhee J, Northoff LM, Guo W, Reissner C, Missler M. Molecular Dissection of Neurobeachin Function at Excitatory Synapses. Front Synaptic Neurosci 2018; 10:28. [PMID: 30158865 PMCID: PMC6104133 DOI: 10.3389/fnsyn.2018.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Abstract
Spines are small protrusions from dendrites where most excitatory synapses reside. Changes in number, shape, and size of dendritic spines often reflect changes of neural activity in entire circuits or at individual synapses, making spines key structures of synaptic plasticity. Neurobeachin is a multidomain protein with roles in spine formation, postsynaptic neurotransmitter receptor targeting and actin distribution. However, the contributions of individual domains of Neurobeachin to these functions is poorly understood. Here, we used mostly live cell imaging and patch-clamp electrophysiology to monitor morphology and function of spinous synapses in primary hippocampal neurons. We demonstrate that a recombinant full-length Neurobeachin from humans can restore mushroom spine density and excitatory postsynaptic currents in neurons of Neurobeachin-deficient mice. We then probed the role of individual domains of Neurobeachin by comparing them to the full-length molecule in rescue experiments of knockout neurons. We show that the combined PH-BEACH domain complex is highly localized in spine heads, and that it is sufficient to restore normal spine density and surface targeting of postsynaptic AMPA receptors. In addition, we report that the Armadillo domain facilitates the formation of filopodia, long dendritic protrusions which often precede the development of mature spines, whereas the PKA-binding site appears as a negative regulator of filopodial extension. Thus, our results indicate that individual domains of Neurobeachin sustain important and specific roles in the regulation of spinous synapses. Since heterozygous mutations in Neurobeachin occur in autistic patients, the results will also improve our understanding of pathomechanism in neuropsychiatric disorders associated with impairments of spine function.
Collapse
Affiliation(s)
- Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Hong J Rhee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Chungku Lee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Manfred W Kilimann
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jeongseop Rhee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Lisa M Northoff
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Wenjia Guo
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
16
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Schmeisser K, Parker JA. Worms on the spectrum - C. elegans models in autism research. Exp Neurol 2017; 299:199-206. [PMID: 28434869 DOI: 10.1016/j.expneurol.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
The small non-parasitic nematode Caenorhabditis elegans is widely used in neuroscience thanks to its well-understood development and lineage of the nervous system. Furthermore, C. elegans has been used to model many human developmental and neurological conditions to better understand disease mechanisms and identify potential therapeutic strategies. Autism spectrum disorder (ASD) is the most prevalent of all neurodevelopmental disorders, and the C. elegans system may provide opportunities to learn more about this complex disorder. Since basic cell biology and biochemistry of the C. elegans nervous system is generally very similar to mammals, cellular or molecular phenotypes can be investigated, along with a repertoire of behaviours. For instance, worms have contributed greatly to the understanding of mechanisms underlying mutations in genes coding for synaptic proteins such as neuroligin and neurexin. Using worms to model neurodevelopmental disorders like ASD is an emerging topic that harbours great, untapped potential. This review summarizes the numerous contributions of C. elegans to the field of neurodevelopment and introduces the nematode system as a potential research tool to study essential roles of genes associated with ASD.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada; Department of Neuroscience, Université de Montreál, 2960 Chemin de la Tour, Montreál, Queb́ec H3T 1J4, Canada.
| |
Collapse
|
18
|
Ouyang P, Zhang H, Fan Z, Wei P, Huang Z, Wang S, Li T. A R/K-rich motif in the C-terminal of the homeodomain is required for complete translocating of NKX2.5 protein into nucleus. Gene 2016; 592:276-80. [DOI: 10.1016/j.gene.2016.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/16/2016] [Accepted: 07/08/2016] [Indexed: 11/30/2022]
|
19
|
Gross L. In Search of Autism’s Roots. PLoS Biol 2016; 14:e2000958. [PMID: 27690292 PMCID: PMC5045192 DOI: 10.1371/journal.pbio.2000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liza Gross
- Public Library of Science, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|