1
|
Lopes TJS, Rios RA, Rios TN, Alencar BM, Ferreira MV, Morishita E. Computational analyses reveal fundamental properties of the AT structure related to thrombosis. BIOINFORMATICS ADVANCES 2022; 3:vbac098. [PMID: 36698764 PMCID: PMC9838315 DOI: 10.1093/bioadv/vbac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Summary Blood coagulation is a vital process for humans and other species. Following an injury to a blood vessel, a cascade of molecular signals is transmitted, inhibiting and activating more than a dozen coagulation factors and resulting in the formation of a fibrin clot that ceases the bleeding. In this process, antithrombin (AT), encoded by the SERPINC1 gene is a key player regulating the clotting activity and ensuring that it stops at the right time. In this sense, mutations to this factor often result in thrombosis-the excessive coagulation that leads to the potentially fatal formation of blood clots that obstruct veins. Although this process is well known, it is still unclear why even single residue substitutions to AT lead to drastically different phenotypes. In this study, to understand the effect of mutations throughout the AT structure, we created a detailed network map of this protein, where each node is an amino acid, and two amino acids are connected if they are in close proximity in the three-dimensional structure. With this simple and intuitive representation and a machine-learning framework trained using genetic information from more than 130 patients, we found that different types of thrombosis have emerging patterns that are readily identifiable. Together, these results demonstrate how clinical features, genetic data and in silico analysis are converging to enhance the diagnosis and treatment of coagulation disorders. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Ricardo A Rios
- Institute of Computing, Federal University of Bahia, Salvador 40170-110, Brazil
| | - Tatiane N Rios
- Institute of Computing, Federal University of Bahia, Salvador 40170-110, Brazil
| | - Brenno M Alencar
- Institute of Computing, Federal University of Bahia, Salvador 40170-110, Brazil
| | - Marcos V Ferreira
- Institute of Computing, Federal University of Bahia, Salvador 40170-110, Brazil
| | | |
Collapse
|
2
|
Doms S, Fokt H, Rühlemann MC, Chung CJ, Kuenstner A, Ibrahim SM, Franke A, Turner LM, Baines JF. Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice. eLife 2022; 11:75419. [PMID: 35866635 PMCID: PMC9307277 DOI: 10.7554/elife.75419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the forces that shape diversity in host-associated bacterial communities is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut mucosal interface, which is in more direct contact with host cells and the immune system. Several mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA transcript-based heritability estimates are positively correlated with cospeciation rate estimates. Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrichment of candidate genes associated with several human diseases, including inflammatory bowel disease, and functional categories including innate immunity and G-protein-coupled receptors. These results highlight key features of the genetic architecture of mammalian host-microbe interactions and how they diverge as new species form. The digestive system, particularly the large intestine, hosts many types of bacteria which together form the gut microbiome. The exact makeup of different bacterial species is specific to an individual, but microbiomes are often more similar between related individuals, and more generally, across related species. Whether this is because individuals share similar environments or similar genetic backgrounds remains unclear. These two factors can be disentangled by breeding different animal lineages – which have different genetic backgrounds while belonging to the same species – and then raising the progeny in the same environment. To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting from breeding strains from multiple locations in a natural hybrid zone between different subspecies. The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of which were known to be associated with human diseases. Further analysis revealed 79 genes that were particularly interesting, as they were involved in recognition and communication with bacteria. These results show how the influence of the host genome on microbiome composition becomes more specialized as animals evolve. Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this knowledge could be helpful to examine how these interactions contribute to the emergence of conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut bacteria.
Collapse
Affiliation(s)
- Shauni Doms
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Hanna Fokt
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Malte Christoph Rühlemann
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Cecilia J Chung
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Axel Kuenstner
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
| | - Andre Franke
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Influence of Vitamin D Status on the Maintenance Dose of Warfarin in Patients Receiving Chronic Warfarin Therapy. Cardiol Ther 2022; 11:421-432. [PMID: 35718837 PMCID: PMC9381664 DOI: 10.1007/s40119-022-00268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Considering the anticoagulant actions of vitamin D, we hypothesize that vitamin D status might affect the required dose of warfarin for maintaining the therapeutic international normalized ratio (INR). METHODS In a retrospective single-center cohort study, serum levels of 25-hydroxyvitamin D were assessed for 89 subjects receiving a stable dose of warfarin for 3 months or longer and had a stable INR between 2 and 3.5 for at least three consecutive visits. A warfarin sensitivity index (WSI), defined as the steady-state INR divided by the mean daily warfarin dose, was used for measuring the warfarin dose response. The relation between the serum level of 25-hydroxyvitamin D and WSI value and the difference in the mean WSI value between the subjects with different vitamin D status categories (sufficient, insufficient, and deficient) were assessed. RESULTS Twenty-one subjects had vitamin D deficiency, 43 had vitamin D insufficiency, and only 25 had normal levels of 25-hydroxyvitamin D. Based on the multiple linear regression analysis, there was a significant but weakly positive correlation between WSI and 25-hydroxyvitamin D serum levels, as the value of WSI increases by almost 0.0027434 for every unit increase in 25-hydroxyvitamin D serum level (p value = 0.041). Using one-way ANOVA analysis, there was a trend in a significant difference between the groups with different vitamin D status categories regarding the mean WSI value (F = 2.95, p value = 0.057), as subjects with sufficient vitamin D state compared to those with vitamin D deficiency had a higher WSI value. CONCLUSIONS Although the study's limitations limit our ability to draw definite conclusions, the present data suggest that in addition to other traditional factors, vitamin D status might also affect warfarin sensitivity and maintenance dose requirement. However, to more clearly explain this link, further studies with high involvement subjects are required.
Collapse
|
4
|
Fakhoury HMA, Kvietys PR, Shakir I, Shams H, Grant WB, Alkattan K. Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients 2021; 13:2216. [PMID: 34203190 PMCID: PMC8308422 DOI: 10.3390/nu13072216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 infects the respiratory tract and leads to the disease entity, COVID-19. Accordingly, the lungs bear the greatest pathologic burden with the major cause of death being respiratory failure. However, organs remote from the initial site of infection (e.g., kidney, heart) are not spared, particularly in severe and fatal cases. Emerging evidence indicates that an excessive inflammatory response coupled with a diminished antiviral defense is pivotal in the initiation and development of COVID-19. A common finding in autopsy specimens is the presence of thrombi in the lungs as well as remote organs, indicative of immunothrombosis. Herein, the role of SARS-CoV-2 in lung inflammation and associated sequelae are reviewed with an emphasis on immunothrombosis. In as much as vitamin D is touted as a supplement to conventional therapies of COVID-19, the impact of this vitamin at various junctures of COVID-19 pathogenesis is also addressed.
Collapse
Affiliation(s)
- Hana. M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Peter R. Kvietys
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - Ismail Shakir
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - Hashim Shams
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA;
| | - Khaled Alkattan
- Department of Surgery, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
5
|
Emerging Role of Vitamin D and its Associated Molecules in Pathways Related to Pathogenesis of Thrombosis. Biomolecules 2019; 9:biom9110649. [PMID: 31653092 PMCID: PMC6920963 DOI: 10.3390/biom9110649] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Vitamin D, besides having an essential role in calcium and bone metabolism, also acts as a mediator of many non-calcemic effects through modulations of several biological responses. Vitamin D exists in its two major forms, vitamin D2, or commonly known as ergocalciferol, and vitamin D3, or commonly known as cholecalciferol. Both of these forms bind to vitamin D-binding protein to get transported to all vital target organs, where it serves as a natural ligand to vitamin D receptors for enabling their biological actions. Clinical reports corroborating vitamin D deficiency with an increase in thrombotic episodes implicate the role of vitamin D and its associated molecule in the regulation of thrombosis-related pathways. Thrombosis is the formation and propagation of a blood clot, known as thrombus. It can occur either in the arterial or the venous system resulting in many severe complications, including myocardial infarction, stroke, ischemia, and venous thromboembolism. Vitamin D, directly or indirectly, controls the expression of several genes responsible for the regulation of cellular proliferation, differentiation, apoptosis, and angiogenesis. All of these are the processes of potential relevance to thrombotic disorders. This review, thus, discussed the effects of vitamin D on pathways involved in thrombosis, such as hemostatic process, inflammatory pathway, and endothelial cell activation, with a focus on the molecular mechanisms associated with them.
Collapse
|
6
|
De la Morena‐Barrio B, Borràs N, Rodríguez‐Alén A, Morena‐Barrio ME, García‐Hernández JL, Padilla J, Bravo‐Pérez C, Miñano A, Rollón N, Corral J, Vidal F, Vicente V. Identification of the first large intronic deletion responsible of type I antithrombin deficiency not detected by routine molecular diagnostic methods. Br J Haematol 2019; 186:e82-e86. [DOI: 10.1111/bjh.15913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Belén De la Morena‐Barrio
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| | - Nina Borràs
- Banc de Sang i TeixitsBarcelonaSpain
- Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB) BarcelonaSpain
| | | | - María E. Morena‐Barrio
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| | - Juan L. García‐Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL) Hospital Universitario de SalamancaSalamancaSpain
| | - José Padilla
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| | - Carlos Bravo‐Pérez
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| | - Antonia Miñano
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| | - Noelia Rollón
- Servicio de Hematología Hospital Virgen de la Salud ToledoSpain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| | - Francisco Vidal
- Banc de Sang i TeixitsBarcelonaSpain
- Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB) BarcelonaSpain
- Instituto de Biología Molecular y Celular del Cáncer Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca SalamancaSpain
- CIBER de Enfermedades Cardiovasculares Madrid Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica Hospital Universitario Morales Meseguer Centro Regional de Hemodonación Universidad de Murcia IMIB‐Arrixaca, Murcia, CIBERER MurciaSpain
| |
Collapse
|
7
|
Muedra V, Moreno L, Rodilla V, Arce C, Montó F, Blázquez Á, Pérez P, D’Ocón P. Dexamethasone Preconditioning in Cardiac Procedures Reduces Decreased Antithrombin Activity and Is Associated to Beneficial Outcomes: Role of Endothelium. Front Pharmacol 2018; 9:1014. [PMID: 30319401 PMCID: PMC6167415 DOI: 10.3389/fphar.2018.01014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Decreased antithrombin (AT) activity in patients scheduled for cardiovascular surgery under cardiopulmonary bypass (CPB) is related to increased postoperative complications and hospitalization time. Indirect evidence suggests that glucocorticoids mitigate this decreased AT activity. To better understand the beneficial effects of AT we have analyzed: (i) the clinical relevance of acute dexamethasone (DX) administration before cardiac surgery on AT activity, (ii) the modulation by DX of AT expression in human endothelial cells (hECs), (iii) the activity of AT on migration and angiogenesis of hECs, or on angiogenesis of rat aorta. Methods: A retrospective cohort study in patients undergoing aortic valve replacement surgery was designed to evaluate the effect of DX administration on AT activity at five separate time points: preoperatively, during CPB, at intensive care unit admission and at 12 and 24 h post-intervention. We have analyzed also clinical differences in postoperative outcomes as safety and the length of stay in hospitalization. Changes in mRNA levels of AT induced by DX were determined by qRT-PCR in human coronary (hCEC), aorta (hAEC) and cardiac microvasculature (hCMEC) endothelial cells. AT activity on migration and angiogenesis were also assayed. Angiogenic growth of rat aortic rings incubated in Matrigel® was determined in presence and absence of AT. Results: The cohort comprised 51 patients in the control group and 29 patients in the group receiving dexamethasone. Preoperative DX supplementation reduced intraoperative decrease of AT activity (67.71 ± 10.49% DX treated vs. 58.12 ± 9.11% untreated, p < 0.001) that could be related to a decrease in the hospitalization time (7.59 ± 4.08 days DX treated vs. 13.59 ± 16.00 days untreated, p = 0.014). Treatment of hECs with 500 nM DX slightly increased AT expression. Incubation with 0.5 and 1 IU/mL of AT increased migration and angiogenesis in hCAECs and hAECs, but not in hCMECs. The same concentrations of AT potentiated angiogenic sprouting of new vessels from rat aorta. Conclusion: Preoperative DX supplementation could be an interesting procedure to avoid excessive decrease in AT levels during cardiac surgery. Positive outcomes associated with maintaining adequate AT levels could be related to its potential beneficial effect on endothelial function (migration and angiogenesis).
Collapse
Affiliation(s)
- Vicente Muedra
- Departamento de Anestesiología, Cuidados Críticos y Terapéutica del Dolor, Hospital Universitario de La Ribera, Valencia, Spain
- Departamento de Cirugía, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Lucrecia Moreno
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Vicente Rodilla
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Cristina Arce
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | - Fermi Montó
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | - Águeda Blázquez
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Pilar D’Ocón
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
8
|
Toderici M, de la Morena-Barrio ME, Padilla J, Miñano A, Antón AI, Iniesta JA, Herranz MT, Fernández N, Vicente V, Corral J. Correction: Identification of Regulatory Mutations in SERPINC1 Affecting Vitamin D Response Elements Associated with Antithrombin Deficiency. PLoS One 2016; 11:e0159987. [PMID: 27441845 PMCID: PMC4956252 DOI: 10.1371/journal.pone.0159987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|