1
|
Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, Jung J, Okada K, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Liu J, Wu SH, Ramos E, Yamamichi A, Watchmaker PB, Ogino H, Saijo A, Du A, Grishanina NR, Woo J, Diaz A, Hervey-Jumper SL, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 2025; 639:463-473. [PMID: 39972144 PMCID: PMC11903331 DOI: 10.1038/s41586-024-08552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity.
Collapse
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Iñaki Etxeberria
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Maggie Colton Cove
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gary K L Chan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel H Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aidan Du
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - James Woo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
2
|
Kwok DW, Stevers NO, Nejo T, Chen LH, Etxeberria I, Jung J, Okada K, Cove MC, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Wu SH, Ramos E, Yamamichi A, Liu J, Watchmaker P, Ogino H, Saijo A, Du A, Grishanina N, Woo J, Diaz A, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563178. [PMID: 37904942 PMCID: PMC10614978 DOI: 10.1101/2023.10.19.563178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.
Collapse
|
3
|
Gezer U, Bronkhorst AJ, Holdenrieder S. The Clinical Utility of Droplet Digital PCR for Profiling Circulating Tumor DNA in Breast Cancer Patients. Diagnostics (Basel) 2022; 12:diagnostics12123042. [PMID: 36553049 PMCID: PMC9776872 DOI: 10.3390/diagnostics12123042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. It is a malignant and heterogeneous disease with distinct molecular subtypes, which has prognostic and predictive implications. Circulating tumor DNA (ctDNA), cell-free fragmented tumor-derived DNA in blood plasma, is an invaluable source of specific cancer-associated mutations and holds great promise for the development of minimally invasive diagnostic tests. Furthermore, serial monitoring of ctDNA over the course of systemic and targeted therapies not only allows unparalleled efficacy assessments but also enables the identification of patients who are at risk of progression or recurrence. Droplet digital PCR (ddPCR) is a powerful technique for the detection and monitoring of ctDNA. Due to its relatively high accuracy, sensitivity, reproducibility, and capacity for absolute quantification, it is increasingly used as a tool for managing cancer patients through liquid biopsies. In this review paper, we gauge the clinical utility of ddPCR as a technique for mutational profiling in breast cancer patients and focus on HER2, PIK3CA, ESR1, and TP53, which represent the most frequently mutated genes in breast cancers.
Collapse
Affiliation(s)
- Ugur Gezer
- Institute of Oncology, Department of Basic Oncology, Istanbul University, Istanbul 34093, Turkey
| | - Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
- Correspondence:
| |
Collapse
|
4
|
Gustafson DL, Collins KP, Fowles JS, Ehrhart EJ, Weishaar KM, Das S, Duval DL, Thamm DH. Prospective clinical trial testing COXEN-based gene expression models of chemosensitivity in dogs with spontaneous osteosarcoma. Cancer Chemother Pharmacol 2021; 88:699-712. [PMID: 34263337 DOI: 10.1007/s00280-021-04325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND This study is a prospective clinical trial in dogs with osteosarcoma testing a gene expression model (GEM) predicting the chemosensitivity of tumors to carboplatin (CARBO) or doxorubicin (DOX) developed using the COXEN method. PATIENTS AND METHODS Sixty dogs with appendicular osteosarcoma were enrolled in this trial. RNA isolation and gene expression profiling were conducted with 2 biopsies for 54/63 screened tumors, and with a single biopsy for 9 tumors. Resulting gene expression data were used for calculation of a COXEN score for CARBO and DOX based on a previous study showing the significance of this predictor on patient outcome utilizing retrospective data (BMC Bioinformatics 17:93). Dogs were assigned adjuvant CARBO, DOX or the combination based on the results of the COXEN score following surgical removal of the tumor via amputation and were monitored for disease progression by chest radiograph every 2 months. RESULTS The COXEN predictor of chemosensitivity to CARBO or DOX was not a significant predictor of progression-free interval or overall survival for the trial participants. The calculation of DOX COXEN score using gene expression data from two independent biopsies of the same tumor were highly correlated (P < 0.0001), whereas the calculated CARBO COXEN score was not (P = 0.3039). CONCLUSION The COXEN predictor of chemosensitivity to CARBO or DOX is not a significant predictor of outcome when utilized in this prospective study. This trial represents the first prospective trial of a GEM predictor of chemosensitivity and establishes pet dogs with cancer as viable surrogates for prospective trials of prognostic indicators.
Collapse
Affiliation(s)
- Daniel L Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA.
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
| | - Keagan P Collins
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Jared S Fowles
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - E J Ehrhart
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kristen M Weishaar
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sunetra Das
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Dawn L Duval
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Griffin JL. Devil in the Detail: Intratumour Heterogeneity and Personalised Medicine for Bladder Cancer. Eur Urol 2018; 75:23-24. [PMID: 30292329 DOI: 10.1016/j.eururo.2018.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jon L Griffin
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
6
|
Song T, Mao F, Shi L, Xu X, Wu Z, Zhou J, Xiao M. Urinary measurement of circulating tumor DNA for treatment monitoring and prognosis of metastatic colorectal cancer patients. ACTA ACUST UNITED AC 2018; 57:268-275. [PMID: 30016269 DOI: 10.1515/cclm-2017-0675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Abstract
Background
Solid tumor tissue testing is the gold standard for molecular-based assays for metastatic colorectal cancer (mCRC). This poses challenges during treatment monitoring. Total DNA derived from urine specimens offers clear advantages to track the disease dynamics. Our study aims to evaluate the sensitivity for total DNA recovered from urine and its clinical relevance to mCRC.
Methods
KRAS mutations in urine specimens were examined in 150 mCRC patients. Baseline concordance was established to determined clinical relevance. The total DNA quantities were also prospectively examined in serial samplings during treatment.
Results
Analysis of the genetic mutations showed good agreement for baseline samples. Matched tumor and urine specimens’ molecular profiles were observed to have 90% concordance. Comparing with healthy volunteers, we established a cutoff of 8.15 ng that demonstrated elevated total DNA levels was associated with mCRC patients (sensitivity: 90.7%; specificity: 82.0%). For patients treated with chemotherapy or anti-epidermal growth factor receptor inhibitors, DNA quantity mirrored early treatment response. Survival analysis showed that patients with sustained elevated quantities of KRAS mutations had poorer outcome.
Conclusions
Total urine DNA offers a viable complement for mutation profiling in mCRC patients, given the good agreement with matched tumor samples. Our study also established that this is specific based on the results from healthy individuals. Serial monitoring of total DNA levels allowed early prediction to treatment response and was effective to identify high risk patients. This is potentially useful to complement current disease management.
Collapse
Affiliation(s)
- Tao Song
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital , Hubei University of Medicine , Xiangyang , P.R. China
| | - Fei Mao
- Department of Urology, Xiangyang No. 1 People’s Hospital , Hubei University of Medicine , Xiangyang , P.R. China
| | - Li Shi
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital , Hubei University of Medicine , Xiangyang , P.R. China
| | - Xuemei Xu
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital , Hubei University of Medicine , Xiangyang , P.R. China
| | - Zirong Wu
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital , Hubei University of Medicine , Xiangyang , P.R. China
| | - Juan Zhou
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital , Hubei University of Medicine , Xiangyang , P.R. China
| | - Meifang Xiao
- Center for Laboratory Medicine, Maternal and Child Health Hospital of Hainan Province , Longkun Road 75 , 570206 Haikou , P.R. China
| |
Collapse
|
7
|
O'Regan CJ, Kearney H, Beausang A, Farrell MA, Brett FM, Cryan JB, Loftus TE, Buckley PG. Temporal stability of MGMT promoter methylation in glioblastoma patients undergoing STUPP protocol. J Neurooncol 2017; 137:233-240. [PMID: 29264834 DOI: 10.1007/s11060-017-2722-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Epigenetic silencing of O-6-methylguanine-DNA methyltransferase (MGMT) promoter via methylation in a glioblastoma (GBM), has been correlated with a more favourable response to alkylating chemotherapeutic agents such as temozolomide. The use of global methylation surrogates such as Long Interspersed Nucleotide Element 1 (LINE1) may also be valuable in order to fully understand these highly heterogeneous tumours. In this study, we analysed both original and recurrent GBMs in 22 patients (i.e. 44 tumours), for both MGMT and LINE1 methylation status. In the 22 patients: 14 (63.6%) displayed MGMT methylation stability in the recurrent GBM versus 8 (36.4%), with instability of methylation status. No significant differences in overall and progression free survival was evident between these two groups. LINE1 methylation status remained stable for 12 (54.5%) of recurrent GBM patients versus 9 (41%) of the patients with instability in LINE1 methylation status (p = 0.02), resulting in an increase in overall survival of the stable LINE1 group (p = 0.04). The results obtained demonstrated major epigenetic instability of GBMs treated with temozolomide as part of the STUPP protocol. GBMs appear to undergo selective evolution post-treatment, and have the ability to recur with a newly reprogrammed epigenetic status. Selective targeting of the altered epigenomes in recurrent GBMs may facilitate the future development of both prognostic biomarkers and enhanced therapeutic strategies.
Collapse
Affiliation(s)
- C J O'Regan
- Department of Molecular Pathology, Beaumont Hospital, Dublin, Ireland.
| | - H Kearney
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - A Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - M A Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - F M Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - J B Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - T E Loftus
- Department of Molecular Pathology, Beaumont Hospital, Dublin, Ireland
| | | |
Collapse
|
8
|
Song SY, Jun J, Park M, Park SK, Choi W, Park K, Jang KT, Lee M. Biobanking of Fresh-Frozen Cancer Tissue: RNA Is Stable Independent of Tissue Type with Less Than 1 Hour of Cold Ischemia. Biopreserv Biobank 2017; 16:28-35. [PMID: 29148824 DOI: 10.1089/bio.2017.0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The effects of preanalytical variables in tissue processing and storage periods on RNA quality of tissues have been well documented in each type of cancer. However, few studies have been performed on a comparative assessment of the impacts across different cancer tissues, even though it is well known that RNase activity is highly variable in various tissue types and RNase-rich tissues have been found to yield low-quality RNA. METHODS We investigated the impacts of cold ischemia times and long-term storage on RNA integrity in various types of cancer tissue, which had been fresh-frozen and collected at the Samsung Medical Center Biobank. RNA quality was also evaluated with regard to histopathological variables. We analyzed RNA integrity number (RIN) data, which had been obtained from our quality control (QC) processes over the last 7 years. Approximately 2% of samples were randomly selected and processed to measure RIN quarterly and after 6 years of storage for QC purposes. RESULTS Fresh-frozen tumor tissues yielded high-quality RNA regardless of tumor type and histopathological features. Up to 1-hour cold ischemia times and up to 6-year storage times did not adversely influence RNA integrity. Only 3 samples showed RIN of <7 out of a total of 396 analyzed tumor tissues. CONCLUSIONS Tissue quality was not adversely affected by long-term storage or limited variations of cold ischemia times. The low-quality samples could be correlated with the structural composition or intratumoral heterogeneity of tissues. The strict application of standardized protocols for tissue collection is the key for high-quality biobanking.
Collapse
Affiliation(s)
- Sang Yong Song
- 1 Biobank, Samsung Medical Center , Seoul, Korea.,2 Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | - Jonghyun Jun
- 1 Biobank, Samsung Medical Center , Seoul, Korea
| | - Miyeon Park
- 1 Biobank, Samsung Medical Center , Seoul, Korea
| | - Seo Kyu Park
- 1 Biobank, Samsung Medical Center , Seoul, Korea
| | - Wonju Choi
- 1 Biobank, Samsung Medical Center , Seoul, Korea
| | - Kyunghee Park
- 3 Samsung Genome Institute , Samsung Medical Center, Seoul, Korea
| | - Kee-Taek Jang
- 1 Biobank, Samsung Medical Center , Seoul, Korea.,2 Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | - Myoyong Lee
- 1 Biobank, Samsung Medical Center , Seoul, Korea
| |
Collapse
|
9
|
Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J Mol Med (Berl) 2017; 95:1167-1178. [PMID: 28871446 DOI: 10.1007/s00109-017-1587-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 10/18/2022]
Abstract
Tumor heterogeneity has been identified at various -omic levels. The tumor genome, transcriptome, proteome, and phenome can vary widely across cells in patient tumors and are influenced by tumor cell interactions with heterogeneous physical conditions and cellular components of the tumor microenvironment. Here, we explore the concept that while variation exists at multiple -omic levels, changes at each of these levels converge on the same pathways and lead to convergent phenotypes in tumors that can provide common drug targets. These phenotypes include cellular growth and proliferation, sustained oncogenic signaling, and immune avoidance, among others. Tumor heterogeneity complicates treatment of patient cancers as it leads to varied response to therapies. Identification of convergent cellular phenotypes arising in patient cancers and targeted therapies that reverse them has the potential to transform the way clinicians treat these cancers and to improve patient outcome.
Collapse
|