1
|
Chilamakuru NB, Vn AD, G VB, Pallaprolu N, Dande A, Nair D, Pemmadi RV, Reddy Y P, Peraman R. New synergistic benzoquinone scaffolds as inhibitors of mycobacterial cytochrome bc1 complex to treat multi-drug resistant tuberculosis. Eur J Med Chem 2024; 272:116479. [PMID: 38733886 DOI: 10.1016/j.ejmech.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Through a comprehensive molecular docking study, a unique series of naphthoquinones clubbed azetidinone scaffolds was arrived with promising binding affinity to Mycobacterial Cytbc1 complex, a drug target chosen to kill multi-drug resistant Mycobacterium tuberculosis (MDR-Mtb). Five compounds from series-2, 2a, 2c, 2g, 2h, and 2j, showcased significant in vitro anti-tubercular activities against Mtb H37Rv and MDR clinical isolates. Further, synergistic studies of these compounds in combination with INH and RIF revealed a potent bactericidal effect of compound 2a at concentration of 0.39 μg/mL, and remaining (2c, 2g, 2h, and 2j) at 0.78 μg/mL. Exploration into the mechanism study through chemo-stress assay and proteome profiling uncovered the down-regulation of key proteins of electron-transport chain and Cytbc1 inhibition pathway. Metabolomics corroborated these proteome findings, and heightened further understanding of the underlying mechanism. Notably, in vitro and in vivo animal toxicity studies demonstrated minimal toxicity, thus underscoring the potential of these compounds as promising anti-TB agents in combination with RIF and INH. These active compounds adhered to Lipinski's Rule of Five, indicating the suitability of these compounds for drug development. Particular significance of molecules NQ02, 2a, and 2h, which have been patented (Published 202141033473).
Collapse
Affiliation(s)
- Naresh Babu Chilamakuru
- Research Scholar, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India
| | - Azger Dusthackeer Vn
- ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai, 600031, Tamil Nadu, India
| | - Varadaraj Bhat G
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nikhil Pallaprolu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India
| | - Aishwarya Dande
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India
| | - Dina Nair
- ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai, 600031, Tamil Nadu, India
| | - Raghuveer Varma Pemmadi
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India; Department of Pharmaceutical Chemistry, A.K.R.G College of Pharmacy, Nallajerla, Andhra Pradesh 534112.
| | - Padmanabha Reddy Y
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India
| | - Ramalingam Peraman
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India; Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India.
| |
Collapse
|
2
|
Alam MS, Guan P, Zhu Y, Zeng S, Fang X, Wang S, Yusuf B, Zhang J, Tian X, Fang C, Gao Y, Khatun MS, Liu Z, Hameed HMA, Tan Y, Hu J, Liu J, Zhang T. Comparative genome analysis reveals high-level drug resistance markers in a clinical isolate of Mycobacterium fortuitum subsp . fortuitum MF GZ001. Front Cell Infect Microbiol 2023; 12:1056007. [PMID: 36683685 PMCID: PMC9846761 DOI: 10.3389/fcimb.2022.1056007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Infections caused by non-tuberculosis mycobacteria are significantly worsening across the globe. M. fortuitum complex is a rapidly growing pathogenic species that is of clinical relevance to both humans and animals. This pathogen has the potential to create adverse effects on human healthcare. Methods The MF GZ001 clinical strain was collected from the sputum of a 45-year-old male patient with a pulmonary infection. The morphological studies, comparative genomic analysis, and drug resistance profiles along with variants detection were performed in this study. In addition, comparative analysis of virulence genes led us to understand the pathogenicity of this organism. Results Bacterial growth kinetics and morphology confirmed that MF GZ001 is a rapidly growing species with a rough morphotype. The MF GZ001 contains 6413573 bp genome size with 66.18 % high G+C content. MF GZ001 possesses a larger genome than other related mycobacteria and included 6156 protein-coding genes. Molecular phylogenetic tree, collinearity, and comparative genomic analysis suggested that MF GZ001 is a novel member of the M. fortuitum complex. We carried out the drug resistance profile analysis and found single nucleotide polymorphism (SNP) mutations in key drug resistance genes such as rpoB, katG, AAC(2')-Ib, gyrA, gyrB, embB, pncA, blaF, thyA, embC, embR, and iniA. In addition, the MF GZ001strain contains mutations in iniA, iniC, pncA, and ribD which conferred resistance to isoniazid, ethambutol, pyrazinamide, and para-aminosalicylic acid respectively, which are not frequently observed in rapidly growing mycobacteria. A wide variety of predicted putative potential virulence genes were found in MF GZ001, most of which are shared with well-recognized mycobacterial species with high pathogenic profiles such as M. tuberculosis and M. abscessus. Discussion Our identified novel features of a pathogenic member of the M. fortuitum complex will provide the foundation for further investigation of mycobacterial pathogenicity and effective treatment.
Collapse
Affiliation(s)
- Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Mst Sumaia Khatun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
3
|
Pavlik I, Ulmann V, Weston RT. Clinical Relevance and Environmental Prevalence of Mycobacterium fortuitum Group Members. Comment on Mugetti et al. Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium fortuitum Group Members. Microorganisms 2021, 9, 797. Microorganisms 2021; 9:microorganisms9112345. [PMID: 34835470 PMCID: PMC8622867 DOI: 10.3390/microorganisms9112345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium fortuitum group (MFG) members are able to cause clinical mycobacteriosis in fish and other animals including humans. M. alvei, M. arceuilense, M. brisbanense, M. conceptionense, M. fortuitum, M. peregrinum, M. porcinum, M. senegalense, M. septicum, and M. setense were isolated from fish with mycobacteriosis. In other animals only three MFG species have been isolated: M. arceuilense from camels' milk, M. farcinogenes from cutaneous infections often described as "farcy", and M. fortuitum from different domestic and wild mammals' species. Out of 17, only 3 MFG species (M. arceuilense, M. lutetiense and M. montmartrense) have never been reported in humans. A total of eight MFG members (M. alvei, M. brisbanense, M. conceptionense, M. fortuitum subsp. acetamidolyticum, M. houstonense, M. peregrinum, M. porcinum, and M. septicum) have been isolated from both pulmonary and extrathoracic locations. In extrathoracic tissues five MFG species (M. boenickei, M. farcinogenes, M. neworleansense, M. senegalense, and M. setense) have been diagnosed and only one MFG member (M. fortuitum subsp. acetamidolyticum) has been isolated from pulmonary infection.
Collapse
Affiliation(s)
- Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Tr. Generala Piky 7, 613 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-773-491-836
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00 Ostrava, Czech Republic;
| | - Ross Tim Weston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia;
| |
Collapse
|
5
|
Morgado SM, Vicente ACP. Beyond the Limits: tRNA Array Units in Mycobacterium Genomes. Front Microbiol 2018; 9:1042. [PMID: 29867913 PMCID: PMC5966550 DOI: 10.3389/fmicb.2018.01042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 11/27/2022] Open
Abstract
tRNA array unit, a genomic region presenting an intriguing high tRNA gene number and density, was supposed to occur only in few bacteria phyla, particularly Firmicutes. Here, we identified and characterized an abundance and diversity of tRNA array units in Mycobacterium associated genomes. These genomes comprised chromosome, bacteriophages and plasmids from mycobacteria. Firstly, we had identified 32 tRNA genes organized in an array unit within a mycobacteria plasmid genome and therefore, we hypothesized the presence of such structures in Mycobacterium genus. However, at the time, bioinformatics tools only predict tRNA genes, not characterizing their arrangement as arrays. In order to test our hypothesis, we developed and applied an in-house Perl script that identified tRNA genes organization as an array unit. This survey included a total of 7,670 complete and drafts genomes of Mycobacterium genus, 4312 mycobacteriophage genomes and 40 mycobacteria plasmids. We showed that tRNA array units are abundant in genomes associated to the Mycobacterium genus, mainly in Mycobacterium abscessus complex species, being spread in chromosome, prophage, and plasmid genomes. Moreover, other non-coding RNA species (tmRNA and structured RNA) were also identified in these regions. Our results revealed that tRNA array units are not restrict, as previously assumed, to few bacteria phyla and genomes being present in one of the most diverse bacteria genus. We also provide a bioinformatics tool that allows further exploration of this issue in huge genomic databases. The presence of tRNA array units in plasmids and bacteriophages, associated with horizontal gene transfer, and in a bacteria genus that explores diverse niches, are indicatives that tRNA array units have impact in the bacteria biology.
Collapse
Affiliation(s)
- Sergio M Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana C P Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|