1
|
Noisumdaeng P, Phadungsombat J, Weerated S, Wiriyarat W, Puthavathana P. Genetic evolution of hemagglutinin and neuraminidase genes of H5N1 highly pathogenic avian influenza viruses in Thailand. PeerJ 2022; 10:e14419. [PMID: 36518286 PMCID: PMC9744161 DOI: 10.7717/peerj.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Ongoing outbreaks of H5N1 highly pathogenic avian influenza (HPAI) viruses and the emergence of the genetic-related hemagglutinin (HA) gene of reassortant H5Nx viruses currently circulating in wild birds and poultries pose a great global public health concern. In this study, we comprehensively analyzed the genetic evolution of Thai H5N1 HA and neuraminidase (NA) genes between 2003 and 2010. The H5N1 Thailand virus clade 2.3.4 was also genetically compared to the currently circulating clade 2.3.4.4 of H5Nx viruses. Methods Full-length nucleotide sequences of 178 HA and 143 NA genes of H5N1 viruses circulating between 2003 and 2010 were phylogenetically analyzed using maximum likelihood (ML) phylogenetic construction. Bayesian phylogenetic trees were reconstructed using BEAST analysis with a Bayesian Markov chain Monte Carlo (MCMC) approach. The maximum clade credibility (MCC) tree was determined, and the time of the most recent common ancestor (tMRCA) was estimated. The H5N1 HA nucleotide sequences of clade 2.3.4 Thailand viruses were phylogenetically analyzed using ML phylogenetic tree construction and analyzed for nucleotide similarities with various subtypes of reassortant H5Nx HA clade 2.3.4.4. Results ML phylogenetic analysis revealed two distinct HA clades, clade 1 and clade 2.3.4, and two distinct NA groups within the corresponding H5 clade 1 viruses. Bayesian phylogenetic reconstruction for molecular clock suggested that the Thai H5N1 HA and NA emerged in 2001.87 (95% HPD: 2001.34-2002.49) and 2002.38 (95% HPD: 2001.99-2002.82), respectively, suggesting that the virus existed before it was first reported in 2004. The Thai H5N1 HA clade 2.3.4 was grouped into corresponding clades 2.3.4, 2.3.4.1, 2.3.4.2, and 2.3.4.3, and shared nucleotide similarities to reassortant H5Nx clade 2.3.4.4 ranged from 92.4-96.8%. Phylogenetic analysis revealed monophyletic H5Nx clade 2.3.4.4 evolved from H5N1 clade 2.3.4. Conclusion H5N1 viruses existed, and were presumably introduced and circulated in avian species in Thailand, before they were officially reported in 2004. HA and NA genes continuously evolved during circulation between 2004 and 2010. This study provides a better understanding of genetic evolution with respect to molecular epidemiology. Monitoring and surveillance of emerging variants/reassortants should be continued.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand,Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sasrinakarn Weerated
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | | | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Ge J, Lin X, Guo J, Liu L, Li Z, Lan Y, Liu L, Guo J, Lu J, Huang W, Xin L, Wang D, Qin K, Xu C, Zhou J. The Antibody Response Against Neuraminidase in Human Influenza A (H3N2) Virus Infections During 2018/2019 Flu Season: Focusing on the Epitopes of 329- N-Glycosylation and E344 in N2. Front Microbiol 2022; 13:845088. [PMID: 35387078 PMCID: PMC8978628 DOI: 10.3389/fmicb.2022.845088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza A (H3N2) virus has been a concern since its first introduction in humans in 1968. Accumulating antigenic changes in viral hemagglutinin (HA), particularly recent cocirculations of multiple HA genetic clades, allow H3N2 virus evade into humans annually. From 2010, the binding of neuraminidase (NA) to sialic acid made the traditional assay for HA inhibition antibodies (Abs) unsuitable for antigenicity characterization. Here, we investigated the serum anti-NA response in a cohort with a seroconversion of microneutralizing (MN) Abs targeting the circulating strain, A/Singapore/INFIMH-16-0019/2016 (H3N2, 3C.2a1)-like, a virus during 2018/2019 flu seasons. We discovered that MN Ab titers show no difference between children and adults. Nevertheless, higher titers of Abs with NA activity inhibition (NI) activity of 129 and seroconversion rate of 68.42% are presented in children aged 7-17 years (n = 19) and 73.47 and 41.17% in adults aged 21-59 years (n = 17), respectively. The MN Abs generated in children display direct correlations with HA- and NA-binding Abs or NI Abs. The NI activity exhibited cross-reactivity to N2 of H3N2 viruses of 2007 and 2013, commonly with 329-N-glycosylation and E344 in N2, a characteristic of earlier 3C.2a H3N2 virus in 2014. The percentage of such viruses pronouncedly decreased and was even replaced by those dominant H3N2 viruses with E344K and 329 non-glycosylation, which have a significantly low activity to the tested antisera. Our findings suggest that NI assay is a testable assay applied in H3N2 infection in children, and the antigenic drift of current N2 should be considered for vaccine selection.
Collapse
Affiliation(s)
- Jing Ge
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiaojing Lin
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Jinlei Guo
- The Disease Control and Prevention of Qinhuai District, Nanjing, China
| | - Ling Liu
- Qinhuai District Center for Disease Control and Prevention, Nanjing, China
| | - Zi Li
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yu Lan
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Liqi Liu
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Junfeng Guo
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Jian Lu
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Weijuan Huang
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li Xin
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Kun Qin
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Cuiling Xu
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Jianfang Zhou
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Lai JCC, Karunarathna HMTK, Wong HH, Peiris JSM, Nicholls JM. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerg Microbes Infect 2019; 8:327-338. [PMID: 30866786 PMCID: PMC6455212 DOI: 10.1080/22221751.2019.1581034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Influenza virus haemagglutinin (HA) and neuraminidase (NA) are involved in the recognition and modulation of sialic acids on the cell surface as the virus receptor. Although the balance between two proteins functions has been found to be crucial for viral fitness, the interplay between the proteins has not been well established. Herein we present evidence for interplay between influenza HA and NA, which may affect the balance between two glycoprotein functions. NA enzymatic activities against sialoglycans were promoted by the presence of HA, which is in accordance with the level of co-existing HA. Such activity enhancement was lost when the HA-receptor binding properties were abolished by low-pH treatment or by mutations at the HA receptor binding domain. Sialidase activities of NA-containing virus-like particles and native influenza viruses were detected using different NA-assays and sialic acid substrates. Most pronounced HA-mediated NA enhancement was found when intact virions were confronted with multivalent surface-anchored substrates, which mimics the physiological conditions on cell membranes. Using recombinant viruses with altered HA bindings preference between α2,3- and α2,6-linked sialic acids, we also found that NA function against different substrates is correlated with the HA-receptor specificity. The effect of HA-receptor specificities on NA functions, together with the HA-mediated NA enhancement, may play a role in virus evasion of the mucus barrier, as well as in cross-species adaptation. Our data also indicate the importance of using multivalent substrates in future studies of NA functions.
Collapse
Affiliation(s)
- Jimmy Chun Cheong Lai
- a Department of Pathology , The University of Hong Kong , Hong Kong , Hong Kong SAR.,b HKU-Pasteur Research Pole , The University of Hong Kong , Hong Kong , Hong Kong SAR
| | - Herath M T K Karunarathna
- c School of Public Health , The University of Hong Kong , Hong Kong , Hong Kong SAR.,d Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science , The University of Peradeniya , Peradeniya , Sri Lanka
| | - Ho Him Wong
- a Department of Pathology , The University of Hong Kong , Hong Kong , Hong Kong SAR.,b HKU-Pasteur Research Pole , The University of Hong Kong , Hong Kong , Hong Kong SAR
| | - Joseph S M Peiris
- b HKU-Pasteur Research Pole , The University of Hong Kong , Hong Kong , Hong Kong SAR.,c School of Public Health , The University of Hong Kong , Hong Kong , Hong Kong SAR
| | - John M Nicholls
- a Department of Pathology , The University of Hong Kong , Hong Kong , Hong Kong SAR
| |
Collapse
|
4
|
Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge. J Virol 2017; 91:JVI.01579-17. [PMID: 28931689 DOI: 10.1128/jvi.01579-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats.IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses.
Collapse
|
5
|
Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00248-17. [PMID: 29021304 DOI: 10.1128/cvi.00248-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
Abstract
The kinetics, longevity, and breadth of antibodies to influenza virus neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pandemic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay. The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/plasma samples were also investigated by microneutralization (MN) and/or hemagglutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1 NA of both homologous and heterologous viruses were observed in H5N1 survivors and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was observed in 65% of the H1N1pdm patients at day 7 after disease onset, but an increase in titer was not observed in serum samples obtained late in infection. On the other hand, an increase in seroconversion rate with the HI assay was observed in the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The study also showed that NI antibodies are broadly reactive, while MN and HI antibodies are more strain specific.
Collapse
|