1
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Javanshir N, Hosseini GNG, Sadeghi M, Esmaeili R, Satarikia F, Ahmadian G, Allahyari N. Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biol Proced Online 2021; 23:23. [PMID: 34847891 PMCID: PMC8903605 DOI: 10.1186/s12575-021-00160-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the importance of using cost-effective methods for therapeutic purposes, the function of probiotics as safe microorganisms and the study of their relevant functional mechanisms have recently been in the spotlight. Finding the mechanisms of attachment and stability and their beneficial effects on the immune system can be useful in identifying and increasing the therapeutic effects of probiotics. In this review, the functional mechanisms of probiotics were comprehensively investigated. Relevant articles were searched in scientific sources, documents, and databases, including PubMed, NCBI, Bactibace, OptiBac, and Bagel4. The most important functional mechanisms of probiotics and their effects on strengthening the epithelial barrier, competitive inhibition of pathogenic microorganisms, production of antimicrobials, binding and interaction with the host, and regulatory effects on the immune system were discussed. In this regard, the attachment of probiotics to the epithelium is very important because the prerequisite for their proper functioning is to establish a proper connection to the epithelium. Therefore, more attention should be paid to the binding effect of probiotics, including sortase A, a significant factor involved in the expression of sortase-dependent proteins (SDP), on their surface as mediators of intestinal epithelial cell binding. In general, by investigating the functional mechanisms of probiotics, it was concluded that the mechanism by which probiotics regulate the immune system and adhesion capacity can directly and indirectly have preventive and therapeutic effects on a wide range of diseases. However, further study of these mechanisms requires extensive research on various aspects.
Collapse
Affiliation(s)
- Nahid Javanshir
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran
| | | | - Mahdieh Sadeghi
- Department of Science, Islamic Azad University - Parand Branch, Parand, Iran
| | | | - Fateme Satarikia
- Department of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| | - Najaf Allahyari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| |
Collapse
|
3
|
Tytgat HLP, Rasinkangas P, Ritari J, Reunanen J, Aalvink S, Lin CW, Palva A, Douillard FP, de Vos WM. Selection and characterization of a SpaCBA pilus-secreting food-grade derivative of Lacticaseibacillus rhamnosus GG. Appl Microbiol Biotechnol 2021; 105:1123-1131. [PMID: 33417041 PMCID: PMC7843469 DOI: 10.1007/s00253-020-11051-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022]
Abstract
Many studies have established the functional properties of Lacticaseibacillus rhamnosus GG, previously known as Lactobacillus rhamnosus GG, marketed worldwide as a probiotic. The extraordinary capacity of L. rhamnosus GG to bind to human mucus and influence the immune system especially stand out. Earlier, we have shown the key role of its SpaCBA sortase-dependent pili encoded by the spaCBA-srtC1 gene cluster herein. These heterotrimeric pili consist of a shaft pilin SpaA, a basal pilin SpaB, and tip pilin SpaC that contains a mucus-binding domain. Here, we set out to characterize a food-grade non-GMO mutant of L. rhamnosus GG, strain PA11, which secretes its pilins, rather than coupling them to the cell surface, due to a defect in the housekeeping sortase A. The sortase-negative strain PA11 was extensively characterized using functional genomics and biochemical approaches and found to secrete the SpaCBA pili into the supernatant. Given the functional importance and uniqueness of the mucus-binding pili of L. rhamnosus GG, strain PA11 offers novel opportunities towards the characterization and further therapeutic application of SpaCBA pili and their low-cost, large-scale production. •Creation of pilus-secreting mutant (PA11) of the key probiotic LGG. •Strain PA11 is defective in a functional housekeeping sortase SrtA. •Strain PA11 opens novel biotherapeutic application avenues. Graphical abstract![]()
Collapse
Affiliation(s)
- Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,DuPont Nutrition & Biosciences, Kantvik, Finland
| | - Jarmo Ritari
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Finnish Red Cross Blood Service, Helsinki, Finland
| | - Justus Reunanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,University of Oulu, Oulu, Finland
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Chia-Wei Lin
- Functional Genomics Center Zurich, ETH Zurich, Zurich, Switzerland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - François P Douillard
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands. .,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland. .,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Rasinkangas P, Tytgat HLP, Ritari J, Reunanen J, Salminen S, Palva A, Douillard FP, de Vos WM. Characterization of Highly Mucus-Adherent Non-GMO Derivatives of Lacticaseibacillus rhamnosus GG. Front Bioeng Biotechnol 2020; 8:1024. [PMID: 32974330 PMCID: PMC7466733 DOI: 10.3389/fbioe.2020.01024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/05/2020] [Indexed: 01/30/2023] Open
Abstract
Lacticaseibacillus rhamnosus GG is one of the best studied lactic acid bacteria in the context of probiotic effects. L. rhamnosus GG has been shown to prevent diarrhea in children and adults and has been implicated to have mitigating or preventive effects in several disorders connected to microbiota dysbiosis. The probiotic effects are largely attributed to its adhesive heterotrimeric sortase-dependent pili, encoded by the spaCBA-srtC1 gene cluster. Indeed, the strain-specific SpaCBA pili have been shown to contribute to adherence, biofilm formation and host signaling. In this work we set out to generate non-GMO derivatives of L. rhamnosus GG that adhere stronger to mucus compared to the wild-type strain using chemical mutagenesis. We selected 13 derivatives that showed an increased mucus-adherent phenotype. Deep shotgun resequencing of the strains enabled division of the strains into three classes, two of which revealed SNPs (single nucleotide polymorphisms) in the spaA and spaC genes encoding the shaft and tip adhesive pilins, respectively. Strikingly, the other class derivatives demonstrated less clear genotype – phenotype relationships, illustrating that pili biogenesis and structure is also affected by other processes. Further characterization of the different classes of derivatives was performed by PacBio SMRT sequencing and RNAseq analysis, which resulted in the identification of molecular candidates driving pilin biosynthesis and functionality. In conclusion, we report on the generation and characterization of three classes of strongly adherent L. rhamnosus GG derivatives that show an increase in adhesion to mucus. These are of special interest as they provide a window on processes and genes driving piliation and its control in L. rhamnosus GG and offer a variety of non-GMO derivatives of this key probiotic strain that are applicable in food products.
Collapse
Affiliation(s)
- Pia Rasinkangas
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jarmo Ritari
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Justus Reunanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - François P Douillard
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|