1
|
Bao H, Liu Y, Duan Y, Chen L, Yang Q. The beetle's structural protein CPCFC making elytra tough and rigid. INSECT SCIENCE 2024. [PMID: 39236247 DOI: 10.1111/1744-7917.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
The insect cuticle, which serves as both a protective barrier and an efficient lever system for locomotion, is an extracellular matrix primarily composed of chitin and protein. The cuticle protein CPCFC characterized by a "CFC" motif containing 2 Cys split by the insertion of 5 residues is distributed across most insect species and specifically localized in the hard part of the cuticle. However, their physiological function is not fully understood. Here, we report 2 CPCFC proteins, TcCPCFC1 and TcCPCFC2, derived from the Coleopteran insect Tribolium castaneum. We revealed that TcCPCFC1 and TcCPCFC2 were predominantly expressed during the larval and adult stages of T. castaneum, respectively. The transcription downregulation of TcCPCFC1 significantly decreased the modulus and toughness of the elytral cuticle. We found that TcCPCFC proteins have high binding affinity to chitin. We cloned and produced recombinant TcCPCFC proteins and demonstrated that the addition of TcCPCFC proteins to chitin hydrogel greatly enhanced the hydrogel's modulus and toughness by forming denser chitin fibrous networks. Our findings reveal the functional role of CPCFC proteins in enhancing mechanical properties of insect cuticle, and we validate this process in vitro, and offer a protein candidate for fabrication of advanced chitin-based materials.
Collapse
Affiliation(s)
- Han Bao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuantao Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanwei Duan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
2
|
Cao YQ, Zhao YJ, Qi HY, Huang JF, Zhu FC, Wang WP, Deng DG. Screening of morphology-related genes based on predator-induced transcriptome sequencing and the functional analysis of Dagcut gene in Daphnia galeata. Curr Zool 2024; 70:440-452. [PMID: 39176057 PMCID: PMC11336676 DOI: 10.1093/cz/zoad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 08/24/2024] Open
Abstract
High fish predation pressure can trigger "induced defense" in Daphnia species, resulting in phenotypic plasticity in morphology, behavior, or life-history traits. The molecular mechanisms of defense morphogenesis (e.g., the tail spine and helmet) in Daphnia remain unclear. In the present study, the tail spine, helmet, and body of Daphnia galeata under fish and non-fish kairomones conditions were collected for transcriptome analysis. A total of 24 candidate genes related to the morphological defense of D. galeata were identified, including 2 trypsin, one cuticle protein, 1 C1qDC protein, and 2 ferritin genes. The function of the Dagcut gene (D. galeata cuticle protein gene) in relation to tail spine morphology was assessed using RNA interference (RNAi). Compared with the EGFP (Enhanced green fluorescent protein) treatment, after RNAi, the expression levels of the Dagcut gene (D. galeata cuticle protein gene) showed a significant decrease. Correspondingly, the tail spines of the offspring produced by D. galeata after RNAi of the Dagcut gene appeared curved during the experiment. In whole-mount in situ hybridization, a clear signal site was detected on the tail spine of D. galeata before RNAi which disappeared after RNAi. Our results suggest that the Dagcut gene may play an important role in tail spine formation of D. galeata, and will provide a theoretical basis for studying the molecular mechanisms of the morphological plasticity in cladocera in the future.
Collapse
Affiliation(s)
- Ya-Qin Cao
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Ya-Jie Zhao
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Hui-Ying Qi
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Jin-Fei Huang
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Fu-Cheng Zhu
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Wen-Ping Wang
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Dao-Gui Deng
- School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| |
Collapse
|
3
|
Guo PL, Guo ZQ, Liu XD. Cuticular protein genes involve heat acclimation of insect larvae under global warming. INSECT MOLECULAR BIOLOGY 2022; 31:519-532. [PMID: 35403301 DOI: 10.1111/imb.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Cuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear. Here, the role of CP genes in heat acclimation was studied. Heat tolerance of the heat-acclimated larvae was significantly stronger than the unacclimated larvae. The cuticular protein content in the heat-acclimated larvae was higher than that of the unacclimated larvae. 191 presumed CP genes of C. medinalis (CmCPs) were identified. Expression patterns of 14 CmCPs were different between the heat acclimated (S39) and unacclimated (S27) larvae under heat stress. CmCPs were specifically expressed in epidermis and the head except CmCPR20 mainly expressed in Malpighian tubules. CmCPR20 was upregulated in S39 while downregulated in S27, but CmTweedle1 and CmCPG1 were upregulated in S27 and downregulated in S39. RNAi CmTweedle1 or CmCPG1 remarkably decreased heat tolerance and cuticular protein content of the heat-acclimated larvae but not the unacclimated larvae. RNAi CmCPR20 decreased heat tolerance and cuticular protein content of the unacclimated larvae but not the heat-acclimated larvae. CmTweedle1 and CmCPG1 genes involve heat acclimation of C. medinalis.
Collapse
Affiliation(s)
- Pan-Long Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Qian Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Xu PZ, Zhang MR, Wang XY, Wu YC. Precocious Metamorphosis of Silkworm Larvae Infected by BmNPV in the Latter Half of the Fifth Instar. Front Physiol 2021; 12:650972. [PMID: 34040541 PMCID: PMC8141865 DOI: 10.3389/fphys.2021.650972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
The mulberry silkworm (Bombyx mori) is a model organism, and BmNPV is a typical baculovirus. Together, these organisms form a useful model to investigate host-baculovirus interactions. Prothoracic glands (PGs) are also model organs, used to investigate the regulatory effect of synthetic ecdysone on insect growth and development. In this study, day-4 fifth instar silkworm larvae were infected with BmNPV. Wandering silkworms appeared in the infected groups 12 h earlier than in the control groups, and the ecdysone titer in infected larvae was significantly higher than that of the control larvae. We then used RNA sequencing (RNA-seq) to analyze silkworm PGs 48 h after BmNPV infection. We identified 15 differentially expressed genes (DEGs) that were classified as mainly being involved in metabolic processes and pathways. All 15 DEGs were expressed in the PGs, of which Novel01674, BmJing, and BmAryl were specifically expressed in the PGs. The transcripts of BmNGDN, BmTrypsin-1, BmACSS3, and BmJing were significantly increased, and BmPyd3, BmTitin, BmIGc2, Novel01674, and BmAryl were significantly decreased from 24 to 72 h in the PGs after BmNPV infection. The changes in the transcription of these nine genes were generally consistent with the transcriptome data. The upregulation of BmTrypsin-1 and BmACSS3 indicate that these DEGs may be involved in the maturation process in the latter half of the fifth instar of silkworm larvae. These findings further our understanding of silkworm larval development, the interaction between BmNPV infection and the host developmental response, and host-baculovirus interactions in general.
Collapse
Affiliation(s)
- Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mei-Rong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
5
|
Guo JY, Wang YS, Chen T, Jiang XX, Wu P, Geng T, Pan ZH, Shang MK, Hou CX, Gao K, Guo XJ. Functional analysis of a miRNA-like small RNA derived from Bombyx mori cytoplasmic polyhedrosis virus. INSECT SCIENCE 2020; 27:449-462. [PMID: 30869181 DOI: 10.1111/1744-7917.12671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus-encoded microRNAs (miRNAs) have been proven to play important roles in host-pathogen interactions. In this study we identified a BmCPV-derived miRNA-like 21 nt small RNA, BmCPV-miR-1, from the small RNA deep sequencing of BmCPV-infected silkworm larvae by stem-loop quantitative real-time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV-miR-1 at the 5' untranslated region. It was found that the expression of BmCPV-miR-1 and its target gene BmIAP were both up-regulated in BmCPV-infected larvae. At the same time, it was confirmed that BmCPV-miR-1 could up-regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV-miR-1 mimics could up-regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV-infected larvae, BmCPV-miR-1 mimics could be further up-regulated and inhibitors could lower the virus-mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV-miR-1 mimics could up-regulate and inhibitors down-regulate their replication in the infected silkworm. These results implied that BmCPV-miR-1 could inhibit cell apoptosis in the infected silkworm through up-regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.
Collapse
Affiliation(s)
- Jian-Yong Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yong-Sheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tian Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiao-Xu Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikoou, China
| | - Zhong-Hua Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Meng-Ke Shang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Cheng-Xiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xi-Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
6
|
Shang F, Ding BY, Ye C, Yang L, Chang TY, Xie J, Tang LD, Niu J, Wang JJ. Evaluation of a cuticle protein gene as a potential RNAi target in aphids. PEST MANAGEMENT SCIENCE 2020; 76:134-140. [PMID: 31461217 DOI: 10.1002/ps.5599] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) has potential as a pest insect control technique. One possible RNAi target is the cuticle protein, which is important in insect molting and development. As an example, here we evaluate the possibility of designing double-stranded RNA (RNA) that is effective for silencing the cuticle protein 19 gene (CP19) in aphids but is harmless to non-target predator insects. RESULTS The sequences of CP19s were similar (86.6-94.4%) among the tested aphid species (Aphis citricidus, Acyrthosiphon pisum, and Myzus persicae) but different in the predator Propylaea japonica. Ingestion of species-specific dsRNAs of CP19 by the three aphids produced 39.3-64.2% gene silencing and 45.8-55.8% mortality. Ingestion of non-species-specific dsRNA (dsAcCP19) by Ac. pisum and M. persicae gave gene silencing levels ranging from 40.4% to 50.3% and 43.3-50.8% mortality. The dsApCP19 did not affect PjCP19 expression or developmental duration in P. japonica. CONCLUSION The results demonstrate that CP19 is a promising RNAi target for aphid control via one dsRNA design. The targeting of genes that are conserved in insect pests but not present in beneficial insects is a useful RNAi-based pest control strategy. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Teng-Yu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiaqin Xie
- Chongqing Engineering Research Center for Fungal Insecticide, Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Liang-De Tang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Trochez-Solarte JD, Ruiz-Erazo X, Almanza-Pinzon M, Zambrano-Gonzalez G. Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Res 2019; 8:1424. [PMID: 32148760 PMCID: PMC7043130 DOI: 10.12688/f1000research.20052.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 11/23/2022] Open
Abstract
In the genome of
Bombyx mori Linnaeus (1758), the microsatellites, or simple sequence repeats (SSR), feature among their particular characteristics a high adenine and thymine (A/T) content, low number of repeats, low frequency, and a grouping in "families" with similar flanking regions. Such characteristics may be the result of a complex interaction between factors that limit the size and dispersion of SSR loci—such as their high association with transposons—and mean that microsatellites within this taxon suitable as molecular markers are relatively rare. The determination of genetic profiles in populations and cell lines has not been affected owing to the high level of polymorphism, nor has the analysis of diversity, structure and genetic relationships. However, the scarcity of suitable microsatellites has restricted their application in genetic mapping, limiting them to preliminary identification of gene location of genes or quantitative trait loci (QTLs) related to thermotolerance, resistance to viruses, pigmentation patterns, body development and the weight of the cocoon, the cortex, the pupa and the filament. The review confirms that, as markers, microsatellites are versatile and perform well. They could thus be useful both to advance research in emerging countries with few resources seeking to promote sericulture in their territories, and to advance in the genetic and molecular knowledge of characteristics of productive and biological interest, given the latest technological developments in terms of the sequencing, identification, isolation and genotyping of SSR loci.
Collapse
Affiliation(s)
- Julian David Trochez-Solarte
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Ximena Ruiz-Erazo
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Martha Almanza-Pinzon
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Giselle Zambrano-Gonzalez
- Biology Department, Geology, Ecology and Conservation Research Group (GECO), Faculty of Natural Sciences and Education, University of Cauca, Popayán, Cauca, 190002, Colombia
| |
Collapse
|
8
|
Masson V, Arafah K, Voisin S, Bulet P. Comparative Proteomics Studies of Insect Cuticle by Tandem Mass Spectrometry: Application of a Novel Proteomics Approach to the Pea Aphid Cuticular Proteins. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Philippe Bulet
- Platform BioPark Archamps; Archamps France
- Institute for Advanced Biosciences; CR Inserm U1209; CNRS UMR 5309; University of Grenoble-Alpes; Grenoble France
| |
Collapse
|
9
|
Kumar D, Gong C. Insect RNAi: Integrating a New Tool in the Crop Protection Toolkit. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121382 DOI: 10.1007/978-3-319-61343-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protecting crops against insect pests is a major focus area in crop protection. Over the past two decades, biotechnological interventions, especially Bt proteins, have been successfully implemented across the world and have had major impacts on reducing chemical pesticide applications. As insects continue to adapt to insecticides, both chemical and protein-based, new methods, molecules, and modes of action are necessary to provide sustainable solutions. RNA interference (RNAi) has emerged as a significant tool to knock down or alter gene expression profiles in a species-specific manner. In the past decade, there has been intense research on RNAi applications in crop protection. This chapter looks at the current state of knowledge in the field and outlines the methodology, delivery methods, and precautions required in designing targets. Assessing the targeting of specific gene expression is also an important part of a successful RNAi strategy. The current literature on the use of RNAi in major orders of insect pests is reviewed, along with a perspective on the regulatory aspects of the approach. Risk assessment of RNAi would focus on molecular characterization, food/feed risk assessment, and environmental risk assessment. As more RNAi-based products come through regulatory systems, either via direct application or plant expression based, the impact of this approach on crop protection will become clearer.
Collapse
Affiliation(s)
- Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PLoS One 2017; 12:e0180160. [PMID: 28727825 PMCID: PMC5519023 DOI: 10.1371/journal.pone.0180160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/10/2017] [Indexed: 12/20/2022] Open
Abstract
Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2) is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE) profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR) was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Simin Bi
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pingzhen Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
- * E-mail:
| |
Collapse
|
11
|
Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, Mo MH. RNA Interference in Moths: Mechanisms, Applications, and Progress. Genes (Basel) 2016; 7:E88. [PMID: 27775569 PMCID: PMC5083927 DOI: 10.3390/genes7100088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Xia-Fei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Peng Chen
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Fang-Tao Liu
- School of Physical Education, Wenshan Institute, Wenshan 663000, China.
| | - Shuai-Chao Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Hui Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|