1
|
Lowell ER, Macpherson C, Villarreal-Cavazos K, Chandrana A, Sevitz JS, Veit K, Dakin A, Quinn L, Troche MS. An interdisciplinary approach to rehabilitation in Parkinson's disease: case series. Neurodegener Dis Manag 2024; 14:217-226. [PMID: 39540543 PMCID: PMC11703373 DOI: 10.1080/17582024.2024.2421736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Interdisciplinary care is increasingly promoted to enhance satisfaction and outcomes for individuals with complex medical conditions, such as Parkinson's disease (PD). However, there is little research on the feasibility or efficacy of interdisciplinary care in clinical settings. And, while the use of an integrated team of allied health professionals has the potential to provide significant health benefits to individuals with PD, there are educational and logistical barriers to the use of interdisciplinary care in clinical settings. An interdisciplinary care model was described that aimed to facilitate these benefits and alleviate some of these known clinical feasibility challenges. Three cases are also provided to exemplify how this approach to collaborative care was used to address individual needs and to highlight some of the successes and challenges associated with the implementation of an interdisciplinary and person-centered care model via telehealth. These cases may help clinicians adopt techniques to facilitate greater collaboration across disciplines or aid in the development of a feasible interdisciplinary program in their own clinics. Further research is needed to further enhance individual outcomes and integrate other disciplines into the care team.
Collapse
Affiliation(s)
- Emilie R Lowell
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, New York, NY10027, USA
| | - Chelsea Macpherson
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY10027, USA
| | - Katya Villarreal-Cavazos
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, New York, NY10027, USA
| | - Anuja Chandrana
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY10027, USA
| | - Jordanna S Sevitz
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, New York, NY10027, USA
| | - Kelly Veit
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, New York, NY10027, USA
| | - Avery Dakin
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, New York, NY10027, USA
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY10027, USA
- Department of Rehabilitation & Regenerative Medicine (Physical Therapy), Columbia University Irving Medical Center, NY10032, USA
| | - Michelle S Troche
- Laboratory for the Study of Upper Airway Dysfunction, Teachers College, Columbia University, New York, NY10027, USA
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY10027, USA
| |
Collapse
|
2
|
Sorrentino ZA, Riklan J, Lloyd GM, Lucke-Wold BP, Mampre D, Quintin S, Zakare-Fagbamila R, Still M, Chandra V, Foote KD, Giasson BI, Hilliard JD. Neuronal tissue collection from intra-cranial instruments used in deep brain stimulation surgery for Parkinson's disease with implications for study of alpha-synuclein. Sci Rep 2024; 14:21641. [PMID: 39284884 PMCID: PMC11405830 DOI: 10.1038/s41598-024-72542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Alpha-synuclein (αSyn) forms pathologic aggregates in Parkinson's disease (PD) and is implicated in mechanisms underlying neurodegeneration. While pathologic αSyn has been extensively studied, there is currently no method to evaluate αSyn within the brains of living patients. Patients with PD are often treated with deep brain stimulation (DBS) surgery in which surgical instruments are in direct contact with neuronal tissue; herein, we describe a method by which tissue is collected from DBS surgical instruments in PD and essential tremor (ET) patients and demonstrate that αSyn is detected. 24 patients undergoing DBS surgery for PD (17 patients) or ET (7 patients) were enrolled; from patient samples, 81.2 ± 44.8 µg of protein (n = 15), on average, was collected from surgical instruments. Light microscopy revealed axons, capillaries, and blood cells as the primary components of purified tissue (n = 3). ELISA assay further confirmed the presence of neuronal and glial tissue in DBS samples (n = 4). Further analysis was conducted using western blot, demonstrating that multiple αSyn antibodies are reactive in PD (n = 5) and ET (n = 3) samples; truncated αSyn (1-125 αSyn) was significantly increased in PD (n = 5) compared to ET (n = 3), in which αSyn misfolding is not expected (0.64 ± 0.25 vs. 0.25 ± 0.12, P = 0.046), thus showing that multiple forms of αSyn can be detected from living PD patients with this method.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA.
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Joshua Riklan
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Grace M Lloyd
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Brandon P Lucke-Wold
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - David Mampre
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Stephan Quintin
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rasheedat Zakare-Fagbamila
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Megan Still
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Vyshak Chandra
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kelly D Foote
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Benoit I Giasson
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Justin D Hilliard
- University of Florida College of Medicine, 1505 SW Archer Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Sorrentino Z, Riklan J, Lloyd G, Lucke-Wold B, Mampre D, Quintin S, Zakare-Fagbamila R, Still M, Chandra V, Foote K, Giasson B, Hilliard J. Analysis of alpha-synuclein harvested from intracranial instruments used in deep brain stimulation surgery for Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-4369598. [PMID: 38826474 PMCID: PMC11142310 DOI: 10.21203/rs.3.rs-4369598/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alpha-synuclein (αSyn) forms pathologic aggregates in Parkinson's disease (PD) and is implicated in mechanisms underlying neurodegeneration. While pathologic αSyn has been extensively studied, there is currently no method to evaluate αSyn within the brains of living patients. Patients with PD are often treated with deep brain stimulation (DBS) surgery in which surgical instruments are in direct contact with neuronal tissue; herein, we describe a method by which tissue is purified from DBS surgical instruments in PD and essential tremor (ET) patients and demonstrate that αSyn is robustly detected. 24 patients undergoing DBS surgery for PD (17 patients) or ET (7 patients) were enrolled; from patient samples, 81.2 ± 44.8 μg protein (n=15) is able to be purified, with immunoblot assays specific for αSyn reactive in all tested samples. Light microscopy revealed axons and capillaries as the primary components of purified tissue (n=3). Further analysis was conducted using western blot, demonstrating that truncated αSyn (1-125 αSyn) was significantly increased in PD (n=5) compared to ET (n=3), in which αSyn misfolding is not expected (0.64 ± 0.25 vs. 0.25 ± 0.12, P = 0.046), thus showing that pathologic αSyn can be reliably purified from living PD patients with this method.
Collapse
|
4
|
Olson MC, Shill H, Ponce F, Aslam S. Deep brain stimulation in PD: risk of complications, morbidity, and hospitalizations: a systematic review. Front Aging Neurosci 2023; 15:1258190. [PMID: 38046469 PMCID: PMC10690827 DOI: 10.3389/fnagi.2023.1258190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a progressive and debilitating neurological disorder. While dopaminergic medication improves PD symptoms, continued management is complicated by continued symptom progression, increasing medication fluctuations, and medication-related dyskinesia. Deep brain stimulation (DBS) surgery is a well-accepted and widespread treatment often utilized to address these symptoms in advanced PD. However, DBS may also lead to complications requiring hospitalization. In addition, patients with PD and DBS may have specialized care needs during hospitalization. Methods This systematic review seeks to characterize the complications and risk of hospitalization following DBS surgery. Patient risk factors and modifications to DBS surgical techniques that may affect surgical risk are also discussed. Results It is found that, when candidates are carefully screened, DBS is a relatively low-risk procedure, but rate of hospitalization is somewhat increased for DBS patients. Discussion More research is needed to determine the relative influence of more advanced disease vs. DBS itself in increased rate of hospitalization, but education about DBS and PD is important to insure effective patient care within the hospital.
Collapse
Affiliation(s)
- Markey C. Olson
- Department of Neurology, Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, Barrow Brain and Spine, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Holly Shill
- Department of Neurology, Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Francisco Ponce
- Department of Neurosurgery, Barrow Brain and Spine, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Sana Aslam
- Department of Neurology, Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
5
|
Techniques of Frameless Robot-Assisted Deep Brain Stimulation and Accuracy Compared with the Frame-Based Technique. Brain Sci 2022; 12:brainsci12070906. [PMID: 35884713 PMCID: PMC9313029 DOI: 10.3390/brainsci12070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Frameless robot-assisted deep brain stimulation (DBS) is an innovative technique for leads implantation. This study aimed to evaluate the accuracy and precision of this technique using the Sinovation SR1 robot. Methods: 35 patients with Parkinson’s disease who accepted conventional frame-based DBS surgery (n = 18) and frameless robot-assisted DBS surgery (n = 17) by the same group of neurosurgeons were analyzed. The coordinate of the tip of the intended trajectory was recorded as xi, yi, and zi. The actual position of lead implantation was recorded as xa, ya, and za. The vector error was calculated by the formula of √(xi − xa)2 + (yi − ya)2 + (zi − za)2 to evaluate the accuracy. Results: The vector error was 1.52 ± 0.53 mm (range: 0.20–2.39 mm) in the robot-assisted group and was 1.77 ± 0.67 mm (0.59–2.98 mm) in the frame-based group with no significant difference between two groups (p = 0.1301). In 10.7% (n = 3) frameless robot-assisted implanted leads, the vector error was greater than 2.00 mm with a maximum offset of 2.39 mm, and in 35.5% (n = 11) frame-based implanted leads, the vector error was larger than 2.00 mm with a maximum offset of 2.98 mm. Leads were more posterior than planned trajectories in the robot-assisted group and more medial and posterior in the conventional frame-based group. Conclusions: Awake frameless robot-assisted DBS surgery was comparable to the conventional frame-based technique in the accuracy and precision for leads implantation.
Collapse
|
6
|
Personalized Medicine in Parkinson's Disease: New Options for Advanced Treatments. J Pers Med 2021; 11:jpm11070650. [PMID: 34357117 PMCID: PMC8303729 DOI: 10.3390/jpm11070650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) presents varying motor and non-motor features in each patient owing to their different backgrounds, such as age, gender, genetics, and environmental factors. Furthermore, in the advanced stages, troublesome symptoms vary between patients due to motor and non-motor complications. The treatment of PD has made great progress over recent decades and has directly contributed to an improvement in patients’ quality of life, especially through the progression of advanced treatment. Deep brain stimulation, radiofrequency, MR–guided focused ultrasound, gamma knife, levodopa-carbidopa intestinal gel, and apomorphine are now used in the clinical setting for this disease. With multiple treatment options currently available for all stages of PD, we here discuss the most recent options for advanced treatment, including cell therapy in advanced PD, from the perspective of personalized medicine.
Collapse
|
7
|
Dannug AT, Gabriel FGC, Macias MCYL, Diesta CCE. Impact of deep brain stimulation on quality of life and motor symptoms in Parkinson's disease and X-linked dystonia parkinsonism: The Philippine experience. Parkinsonism Relat Disord 2021; 87:92-97. [PMID: 34015695 DOI: 10.1016/j.parkreldis.2021.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Deep brain stimulation (DBS) is indisputable in improving motor symptoms of Parkinson's Disease (PD) and X-Linked Dystonia Parkinsonism (XDP)(4,9,22,23,26). However, a discrepancy between this improvement and the perceived quality of life (QoL) has been observed. This study aims to investigate changes and correlation between quality of life, motor symptoms and medication dosing. METHODOLOGY This prospective observational study enrolled 13 patients (6 PD, 7 XDP) who underwent DBS from 2017 to 2018. Quality of life changes were determined by Parkinson's Disease - 39 (PDQ-39 English and Filipino versions) at baseline, 6 months and 12 month after DBS. Motor symptoms and medication dosing were also evaluated within the same period and correlated with QoL changes. RESULTS AND DISCUSSION There is a significant reduction of PDQ-39 mean scores[F(1.06,11.64) = 18.235; p = 0.001; ηp2 = 0.624] between baseline and 6 months among XDP patients (p = 0.018) and baseline and 12 months among PD patients (p = 0.027) and XDP patients (p < 0.001). Specific domains with significant improvement were stigma, cognition, mobility, ADLs, communication and bodily discomfort. Correlating these with changes in motor symptoms, only mobility for PD and ADLs for XDP were positively related. CONCLUSION This study has shown the positive impact of DBS in improving QoL among PD and XDP patients over a 12-month period.
Collapse
Affiliation(s)
- Arjay T Dannug
- Section of Neurology, Department of Neurosciences, Makati Medical Center, Legaspi Village, Makati City, 1229, Philippines.
| | - Frachesca Gabrielle C Gabriel
- Section of Neurology, Department of Neurosciences, Makati Medical Center, Legaspi Village, Makati City, 1229, Philippines
| | - Ma Claudia Ysabel L Macias
- College of Social Sciences and Philosophy, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Cid Czarina E Diesta
- Section of Neurology, Department of Neurosciences, Makati Medical Center, Legaspi Village, Makati City, 1229, Philippines
| |
Collapse
|
8
|
Mahajan A, Butala A, Okun MS, Mari Z, Mills KA. Global Variability in Deep Brain Stimulation Practices for Parkinson's Disease. Front Hum Neurosci 2021; 15:667035. [PMID: 33867961 PMCID: PMC8044366 DOI: 10.3389/fnhum.2021.667035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) has become a standard treatment option for select patients with Parkinson’s disease (PD). The selection process and surgical procedures employed have, to date, not been standardized. Methods A comprehensive 58-question web-based survey was developed with a focus on DBS referral practices and peri-operative management. The survey was distributed to the Parkinson’s Foundation Centers of Excellence, members of the International Parkinson’s Disease and Movement Disorders Society, and the Parkinson Study Group (Functional Neurosurgery Working Group) between December 2015 and May 2016. Results There were 207 individual respondents (20% response rate) drawn from 59 countries and 6 continents, of whom 64% received formal training in DBS. Thirteen percent of centers reported that DBS could proceed despite a confidence level of < 50% for PD diagnosis. A case-based approach to DBS candidacy was applied in 51.3% of centers without a cut-off for levodopa-responsiveness. Surprisingly, 33% of centers regularly used imaging for diagnostic confirmation of idiopathic PD. Thirty-one percent of centers reported that neuropsychological evaluation did not affect DBS target selection. Approximately half of the respondents reported determination of DBS candidacy based on a multidisciplinary committee evaluation and 1/3rd reported that a committee was used for target selection. Eight percent of respondents felt that psychosocial factors should not impact DBS candidacy nor site selection. Involvement of allied health professionals in the preoperative process was sparse. There was high variability in preoperative education about DBS outcome expectations. Approximately half of the respondents did not utilize a “default brain target,” though STN was used more commonly than GPi. Specific DBS procedure techniques applied, as well as follow-up timelines, were highly variable. Conclusion Results revealed high variability on the best approaches for DBS candidate selection, brain target selection, procedure type, and postoperative practices. Cognitive and mood assessments were underutilized. There was low reliance on multidisciplinary teams or psychosocial factors to impact the decision-making process. There were small but significant differences in practice across global regions, especially regarding multidisciplinary teams. The wide variability of responses across multiple facets of DBS care highlights the need for prospective studies to inform evidence-based guidelines.
Collapse
Affiliation(s)
- Abhimanyu Mahajan
- Rush Parkinson's Disease and Movement Disorders Program, Chicago, IL, United States
| | - Ankur Butala
- Departments of Psychiatry and Neurology (GMP), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Zoltan Mari
- Cleveland Clinic Luo Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Rajan R, Brennan L, Bloem BR, Dahodwala N, Gardner J, Goldman JG, Grimes DA, Iansek R, Kovács N, McGinley J, Parashos SA, Piemonte MEP, Eggers C. Integrated Care in Parkinson's Disease: A Systematic Review and Meta-Analysis. Mov Disord 2020; 35:1509-1531. [PMID: 32598094 DOI: 10.1002/mds.28097] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Quality of life in Parkinson's disease (PD) is affected by motor and nonmotor symptoms, necessitating an integrated care approach. Existing care models vary considerably in numerous domains. The objectives of this study were to perform a systematic review and meta-analysis of PD integrated care models and develop recommendations for a representative model. METHODS We conducted a systematic review of published integrated care models and a meta-analysis of randomized, controlled trials examining integrated care versus standard care. The primary outcome was health-related quality of life using a validated PD scale. We evaluated levels of care integration using the Rainbow Model of Integrated Care. RESULTS Forty-eight publications were identified, including 8 randomized, controlled trials with health-related quality of life data (n = 1,149 total PD patients). Qualitative evaluation of individual care model integration guided by the Rainbow Model of Integrated Care revealed frequent clinical and professional integration, but infrequent organizational and population-based integration elements. Meta-analysis of randomized, controlled trials revealed significant heterogeneity (I2 = 90%, P < 0.0001). Subgroup analysis including only outpatient care models (n = 5) indicated homogeneity of effects (I2 = 0%, P = 0.52) and improved health-related quality of life favoring integrated care, with a small effect size (standardized mean difference [SMD], -0.17; 95% CI, -0.31 to -0.03; P = 0.02). CONCLUSIONS Outpatient integrated PD care models may improve patient-reported health-related quality of life compared with standard care; however, because of variable methodological approaches and a high risk of bias related to inherent difficulties in study design (eg, blinding of participants and interventionists), generalizability of these results are difficult to establish. The Rainbow Model of Integrated Care is a promising method of evaluating elements and levels of integration from individual patient care to population health in a PD context. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, LLC. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roopa Rajan
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Nabila Dahodwala
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joan Gardner
- Struthers Parkinson's Center, Park Nicollet Health Services, Golden Valley, Minnesota, USA
| | - Jennifer G Goldman
- Parkinson's Disease and Movement Disorders, Shirley Ryan Abilitylab; Department of Physical Medicine & Rehabilitation and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David A Grimes
- Ottawa Hospital, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Robert Iansek
- Clinical Research Centre for Movement Disorders and Gait, Comprehensive Parkinson Care Program, Parkinson Foundation Centre of Excellence, Kington Centre Monash Health Cheltenham, Victoria, Australia
- Department of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Norbert Kovács
- Department of Neurology, Universityof Pécs, Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Jennifer McGinley
- Physiotherapy Department, The University of Melbourne, Melbourne, Australia
| | - Sotirios A Parashos
- Struthers Parkinson's Center, Park Nicollet Health Services, Golden Valley, Minnesota, USA
| | - Maria E P Piemonte
- University of Sao Paulo, Medical School, Physical Therapy, Speech Therapy and Occupational Therapy Department, Sao Paulo, Brazil
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg; Center for Mind, Brain and Behavior, Universities Gießen & Marburg, Marburg, Germany
| |
Collapse
|
10
|
Mei S, Eisinger RS, Hu W, Tsuboi T, Foote KD, Hass CJ, Okun MS, Chan P, Ramirez-Zamora A. Three-Year Gait and Axial Outcomes of Bilateral STN and GPi Parkinson's Disease Deep Brain Stimulation. Front Hum Neurosci 2020; 14:1. [PMID: 32116598 PMCID: PMC7026192 DOI: 10.3389/fnhum.2020.00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 01/18/2023] Open
Abstract
Objective: To examine the short- and long-term clinical outcomes of the bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) on gait and axial symptoms in Parkinson's disease (PD) patients. Available data have been inconsistent and mostly short-term regarding the effect of both brain targets on gait and axial symptoms. We aimed to identify potential target specific differences at 3-year follow-up from a large single-center experience. Methods: We retrospectively reviewed short-term (6-month follow-up) and long-term (36-month follow-up) changes in the Unified Parkinson's Disease Rating Scale (UPDRS) Part II and III total scores of 72 PD patients (53 with bilateral STN-DBS and 19 with bilateral GPi-DBS). An interdisciplinary team made target-specific decisions for each DBS patient. We analyzed changes in gait and axial subscores derived from UPDRS II and III. Results: In both the STN- and GPi-DBS cohorts, we observed no significant differences in gait and axial UPDRS derived subscores in the off-med/on stimulation state at long-term follow-up when compared to baseline. On-med axial scores remained similar in the short-term but worsened in both groups (STN, 2.23 ± 3.43, p < 0.001; GPi, 2.53 ± 2.37, p < 0.01) in the long-term possibly due to disease progression. At long-term follow-up, the UPDRS III off-med/on stimulation scores worsened but were persistently improved from baseline in both groups (-9.07 ± 13.9, p < 0.001). Conclusions: The study showed that long-term both STN- and GPi-DBS had a similar effect on gait and axial symptoms in UPDRS derived subscores at 36-month follow-up despite potential baseline differences in criteria for selection of each target. More sophisticated measures of gait and balance beyond the categorical UPDRS score will be needed for future studies.
Collapse
Affiliation(s)
- Shanshan Mei
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Robert S Eisinger
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Takashi Tsuboi
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Christopher J Hass
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Adolfo Ramirez-Zamora
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Bullard AJ, Hutchison BC, Lee J, Chestek CA, Patil PG. Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays. Neuromodulation 2019; 23:411-426. [DOI: 10.1111/ner.13069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Autumn J. Bullard
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Jiseon Lee
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI USA
| | - Parag G. Patil
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Neurosurgery University of Michigan Medical School Ann Arbor MI USA
| |
Collapse
|
12
|
Elkouzi A, Ramirez-Zamora A, Zeilman P, Barabas M, Eisinger RS, Malaty IA, Okun MS, Almeida L. Rescue levodopa-carbidopa intestinal gel (LCIG) therapy in Parkinson's disease patients with suboptimal response to deep brain stimulation. Ann Clin Transl Neurol 2019; 6:1989-1995. [PMID: 31518070 PMCID: PMC6801178 DOI: 10.1002/acn3.50889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/04/2022] Open
Abstract
Objective To evaluate the effectiveness of levodopa‐carbidopa intestinal gel (LCIG) as an add‐on rescue therapy following deep brain stimulation (DBS) for treatment of motor fluctuations. Background Both DBS and LCIG are FDA‐approved therapies for treatment of motor fluctuations in advanced PD. Few studies have examined dual therapy for refractory motor fluctuations and it is unknown what the effect on quality of life will be in advanced PD. Methods We conducted a retrospective study using a large database of all medical and surgical PD cases at the University of Florida. Six patients were identified with DBS who subsequently received rescue LCIG therapy. The clinical histories, indications for intervention and outcomes were reviewed. Results All patients were managed initially with DBS (bilateral STN DBS (n = 3), bilateral GPi DBS (n = 1), unilateral GPI DBS (n = 2)). Patients with well‐placed (n = 3) and suboptimally placed DBS leads (n = 3) had significant reduction in their motor fluctuations with improvement in the off‐medication time after rescue LCIG therapy. Improvement in quality of life scores (PDQ‐39) was appreciated in four DBS patients following the addition of LCIG therapy. Conclusions LCIG is a promising add‐on rescue therapy for select patients with existing DBS devices. The LCIG may possibly reduce motor fluctuations and improve quality of life in advanced PD irrespective of the DBS target or the accuracy of lead placement. Dual therapy may also be ideal for patients who are considered high risk for additional DBS surgeries.
Collapse
Affiliation(s)
- Ahmad Elkouzi
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Adolfo Ramirez-Zamora
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Pam Zeilman
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Matthew Barabas
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Robert S Eisinger
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Irene A Malaty
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Elkouzi A, Tsuboi T, Burns MR, Eisinger RS, Patel A, Deeb W. Dorsal GPi/GPe Stimulation Induced Dyskinesia in a Patient with Parkinson's Disease. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-685. [PMID: 31565536 PMCID: PMC6744811 DOI: 10.7916/tohm.v0.685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/05/2019] [Indexed: 01/16/2023]
Abstract
Clinical vignette A 68-year-old man with Parkinson’s disease (PD) had bilateral GPi DBS placed for management of his motor fluctuations. He developed stimulation-induced dyskinesia (SID) with left dorsal GPi stimulation. Clinical dilemma What do we know about SID in PD patients with GPi DBS? What are the potential strategies used to maximize the DBS therapeutic benefit and minimize the side effects of stimulation? Clinical solution Avoiding the contact implicated in SID and programming more ventral contacts, using lower voltage, frequency and pulse width and programming in bipolar configuration all appear to help minimize the SID and provide appropriate symptomatic motor control. Gap in knowledge Little is known about SID in patients with PD who had GPi DBS therapy. More studies using volume of tissue activated and diffusion tensor imaging MRI are needed to localize specific tracts in or around the GPi that may be implicated in SID.
Collapse
Affiliation(s)
- Ahmad Elkouzi
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Takashi Tsuboi
- Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| | - Matthew R Burns
- Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| | | | - Amar Patel
- Department of Neurology, Yale school of Medicine, Yale University, New Haven, CT, USA
| | - Wissam Deeb
- Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| |
Collapse
|
14
|
Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin Proc 2017; 92:1427-1444. [PMID: 28870357 DOI: 10.1016/j.mayocp.2017.05.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022]
Abstract
Rapid advancements in neurostimulation technologies are providing relief to an unprecedented number of patients affected by debilitating neurologic and psychiatric disorders. Neurostimulation therapies include invasive and noninvasive approaches that involve the application of electrical stimulation to drive neural function within a circuit. This review focuses on established invasive electrical stimulation systems used clinically to induce therapeutic neuromodulation of dysfunctional neural circuitry. These implantable neurostimulation systems target specific deep subcortical, cortical, spinal, cranial, and peripheral nerve structures to modulate neuronal activity, providing therapeutic effects for a myriad of neuropsychiatric disorders. Recent advances in neurotechnologies and neuroimaging, along with an increased understanding of neurocircuitry, are factors contributing to the rapid rise in the use of neurostimulation therapies to treat an increasingly wide range of neurologic and psychiatric disorders. Electrical stimulation technologies are evolving after remaining fairly stagnant for the past 30 years, moving toward potential closed-loop therapeutic control systems with the ability to deliver stimulation with higher spatial resolution to provide continuous customized neuromodulation for optimal clinical outcomes. Even so, there is still much to be learned about disease pathogenesis of these neurodegenerative and psychiatric disorders and the latent mechanisms of neurostimulation that provide therapeutic relief. This review provides an overview of the increasingly common stimulation systems, their clinical indications, and enabling technologies.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, Victoria, Australia; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Abbas Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
15
|
Almeida L, Deeb W, Spears C, Opri E, Molina R, Martinez-Ramirez D, Gunduz A, Hess CW, Okun MS. Current Practice and the Future of Deep Brain Stimulation Therapy in Parkinson's Disease. Semin Neurol 2017; 37:205-214. [PMID: 28511261 PMCID: PMC6195220 DOI: 10.1055/s-0037-1601893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease patients experiencing motor fluctuations, medication-resistant tremor, and/or dyskinesia. Currently, the subthalamic nucleus and the globus pallidus internus are the two most widely used targets, with individual advantages and disadvantages influencing patient selection. Potential DBS patients are selected using the few existing guidelines and the available DBS literature, and many centers employ an interdisciplinary team review of the individual's risk-benefit profile. Programmed settings vary based on institution- or physician-specific protocols designed to maximize benefits and limit adverse effects. Expectations should be realistic and clearly defined during the evaluation process, and each bothersome symptom should be addressed in the context of building the risk-benefit profile. Current DBS research is focused on improved symptom control, the development of newer technologies, and the improved efficiency of stimulation delivery. Techniques deliver stimulation in a more personalized way, and methods of adaptive DBS such as closed-loop approaches are already on the horizon.
Collapse
Affiliation(s)
- Leonardo Almeida
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Wissam Deeb
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Chauncey Spears
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Enrico Opri
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rene Molina
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Daniel Martinez-Ramirez
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Aysegul Gunduz
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christopher W. Hess
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Michael S. Okun
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| |
Collapse
|
16
|
Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:934-943. [PMID: 28482609 DOI: 10.1016/j.msec.2017.02.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs. Poly(lactic-co-glycolic acid) (PLGA) microcarriers are designed as an injectable scaffold and synthesized via double emulsion method. The surface of PLGA microcarriers are functionalized by collagen as a bioadhesive agent for improved cell attachment. The results demonstrate effective overexpression of NT-3. The expression of tyrosine hydroxylase (TH) in transfected BMSCs reveal that NT-3 promotes the intracellular signaling pathway of DA neuron differentiation. It is also shown that transfected BMSCs are successfully attached to the surface of microcarriers. The presence of dopamine in peripheral media of cell/microcarrier complex reveals that BMSCs are successfully differentiated into dopaminergic neuron. Our approach that sustains presence of growth factor can be suggested as a novel complementary therapeutic strategy for treatment of Parkinson disease.
Collapse
|