1
|
Kumar Y, Sundaram S, Yadav D. Current Vaccination Practice in Diabetic (Diabetes I) Patients. Curr Diabetes Rev 2024; 20:e061023221816. [PMID: 37859318 DOI: 10.2174/0115733998260361230927002739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/09/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
The worldwide prevalence of diabetes, an endocrine condition, is rising quickly. The alarming rise of diabetes in recent years has emerged as a major contributor to premature death and illness among persons of working age. The potential use of immunomodulatory drugs to prevent diabetes has been a source of worry in light of recent advances in our understanding of the role of autoimmune responses in the development of diabetes. Vaccines can work in a variety of ways, including by eliminating autoreactive T-cells or by blocking the connections between immune cells. Most diabetes vaccines that have been created so far have only been evaluated in animal models, with just a small number having undergone successful human trials. In this article, the authors also look at the clinical trial research that are currently being conducted to create a prototype diabetes vaccine.
Collapse
Affiliation(s)
- Yati Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sonali Sundaram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Wang HW, Tang J, Sun L, Li Z, Deng M, Dai Z. Mechanism of immune attack in the progression of obesity-related type 2 diabetes. World J Diabetes 2023; 14:494-511. [PMID: 37273249 PMCID: PMC10236992 DOI: 10.4239/wjd.v14.i5.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity and overweight are widespread issues in adults, children, and adolescents globally, and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM. This proinflammatory activation occurs in multiple organs and tissues. Immune cell-mediated systemic attack is considered to contribute strongly to impaired insulin secretion, insulin resistance, and other metabolic disorders. This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut, islet, and insulin-targeting organs (adipose tissue, liver, skeletal muscle) in obesity-related T2DM. There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Hua-Wei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
3
|
Xiang H, Yu H, Zhou Q, Wu Y, Ren J, Zhao Z, Tao X, Dong D. Macrophages: A rising star in immunotherapy for chronic pancreatitis. Pharmacol Res 2022; 185:106508. [DOI: 10.1016/j.phrs.2022.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
4
|
Chellappan DK, Bhandare RR, Shaik AB, Prasad K, Suhaimi NAA, Yap WS, Das A, Banerjee P, Ghosh N, Guith T, Das A, Balakrishnan S, Candasamy M, Mayuren J, Palaniveloo K, Gupta G, Singh SK, Dua K. Vaccine for Diabetes-Where Do We Stand? Int J Mol Sci 2022; 23:ijms23169470. [PMID: 36012735 PMCID: PMC9409121 DOI: 10.3390/ijms23169470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is an endocrinological disorder with a rapidly increasing number of patients globally. Over the last few years, the alarming status of diabetes has become a pivotal factor pertaining to morbidity and mortality among the youth as well as middle-aged people. Current developments in our understanding related to autoimmune responses leading to diabetes have developed a cause for concern in the prospective usage of immunomodulatory agents to prevent diabetes. The mechanism of action of vaccines varies greatly, such as removing autoreactive T cells and inhibiting the interactions between immune cells. Currently, most developed diabetes vaccines have been tested in animal models, while only a few human trials have been completed with positive outcomes. In this review, we investigate the undergoing clinical trial studies for the development of a prototype diabetes vaccine.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (D.K.C.); (R.R.B.); Tel.: +60-12-636-1308 (D.K.C.); +971-6-705-6227 (R.R.B.)
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (D.K.C.); (R.R.B.); Tel.: +60-12-636-1308 (D.K.C.); +971-6-705-6227 (R.R.B.)
| | - Afzal B. Shaik
- St. Mary’s College of Pharmacy, St. Mary’s Group of Institutions Guntur, Chebrolu, Guntur 522212, India
| | - Krishna Prasad
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Science Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
| | | | - Wei Sheng Yap
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Arpita Das
- Department of Biotechnology, Adamas University, Kolkata 700126, India
| | - Pradipta Banerjee
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nandini Ghosh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tanner Guith
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amitava Das
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kishneth Palaniveloo
- C302, Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021; 13:1200. [PMID: 34452161 PMCID: PMC8398144 DOI: 10.3390/pharmaceutics13081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
While oral agents have been the gold standard for cardiovascular disease therapy, the new generation of treatments is switching to other administration options that offer reduced dosing frequency and more efficacy. The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect. The present review will give an overview of the current knowledge on the involvement of the lymphatic vessels in drug delivery in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Fatma Moawad
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada Amri
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
6
|
Pezhman L, Tahrani A, Chimen M. Dysregulation of Leukocyte Trafficking in Type 2 Diabetes: Mechanisms and Potential Therapeutic Avenues. Front Cell Dev Biol 2021; 9:624184. [PMID: 33692997 PMCID: PMC7937619 DOI: 10.3389/fcell.2021.624184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.
Collapse
Affiliation(s)
- Laleh Pezhman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Abd Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J 2020; 477:1089-1107. [PMID: 32202638 DOI: 10.1042/bcj20190472] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Adipose tissue regulates metabolic homeostasis by participating in endocrine and immune responses in addition to storing and releasing lipids from adipocytes. Obesity skews adipose tissue adipokine responses and degrades the coordination of adipocyte lipogenesis and lipolysis. These defects in adipose tissue metabolism can promote ectopic lipid deposition and inflammation in insulin-sensitive tissues such as skeletal muscle and liver. Sustained caloric excess can expand white adipose tissue to a point of maladaptation exacerbating both local and systemic inflammation. Multiple sources, instigators and propagators of adipose tissue inflammation occur during obesity. Cross-talk between professional immune cells (i.e. macrophages) and metabolic cells (i.e. adipocytes) promote adipose tissue inflammation during metabolic stress (i.e. metaflammation). Metabolic stress and endogenous danger signals can engage pathogen recognition receptors (PRRs) of the innate immune system thereby activating pro-inflammatory and stress pathways in adipose tissue. The Nod-like receptor protein 3 (NLRP3) inflammasome can act as a metabolic danger sensor to a wide range of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs). Activation of the NLRP3 inflammasome facilitates caspase-1 dependent production of the pro-inflammatory cytokines IL-1β and IL-18. Activation of the NLRP3 inflammasome can promote inflammation and pyroptotic cell death, but caspase-1 is also involved in adipogenesis. This review discusses the role of the NLRP3 inflammasome in adipose tissue immunometabolism responses relevant to metabolic disease. Understanding the potential sources of NLRP3 activation and consequences of NLRP3 effectors may reveal therapeutic opportunities to break or fine-tune the connection between metabolism and inflammation in adipose tissue during obesity.
Collapse
|
8
|
Li Y, Chen S, Sun J, Yu Y, Li M. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int 2020; 44:2357-2362. [PMID: 32716099 DOI: 10.1002/cbin.11428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-38 (IL-38) is a novel member of the IL-1 cytokine family with anti-inflammatory activity. However, its effect on adipogenesis and inflammatory cytokines secretion of adipocytes in vitro has not been reported. To address whether IL-38 inhibits adipogenesis and inflammation in vitro, adipose precursor 3T3-L1 cells were cultured with or without IL-38. The morphology and size of lipid droplets in 3T3-L1 cells were measured by Oil red O staining. The mRNA expression levels of GATA-binding protein-3 (GATA-3), glucose transporter type 4 (GLUT4), peroxisome proliferator-associated receptor γ2, IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in 3T3-L1 cells were detected by real-time PCR, The contents of IL-6, IL-1β, and MCP-1 in 3T3-L1 cell medium supernatants were determined by enzyme-linked immunosorbent assay. IL-38 significantly decreased the number of lipid droplets in 3T3-L1 cells. IL-38 also increased GATA-3 and GLUT4 mRNA expression and inhibited IL-1β, IL-6, and MCP-1 secretion by 3T3-L1 cells. It is concluded that IL-38 can inhibit the differentiation of human adipocytes and inflammatory cytokine production by 3T3-L1 cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Sisi Chen
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Jun Sun
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Yu
- The Fifth People's Hospital of Jilin City, Jilin, China
| | - Mingcai Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
9
|
Muhammad SA, Ashfaq H, Zafar S, Munir F, Jamshed MB, Chen J, Zhang Q. Polyvalent therapeutic vaccine for type 2 diabetes mellitus: Immunoinformatics approach to study co-stimulation of cytokines and GLUT1 receptors. BMC Mol Cell Biol 2020; 21:56. [PMID: 32703184 PMCID: PMC7376330 DOI: 10.1186/s12860-020-00279-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a worldwide disease that have an impact on individuals of all ages causing micro and macro vascular impairments due to hyperglycemic internal environment. For ultimate treatment to cure T2DM, association of diabetes with immune components provides a strong basis for immunotherapies and vaccines developments that could stimulate the immune cells to minimize the insulin resistance and initiate gluconeogenesis through an insulin independent route. Methodology Immunoinformatics based approach was used to design a polyvalent vaccine for T2DM that involved data accession, antigenicity analysis, T-cell epitopes prediction, conservation and proteasomal evaluation, functional annotation, interactomic and in silico binding affinity analysis. Results We found the binding affinity of antigenic peptides with major histocompatibility complex (MHC) Class-I molecules for immune activation to control T2DM. We found 13-epitopes of 9 amino acid residues for multiple alleles of MHC class-I bears significant binding affinity. The downstream signaling resulted by T-cell activation is directly regulated by the molecular weight, amino acid properties and affinity of these epitopes. Each epitope has important percentile rank with significant ANN IC50 values. These high score potential epitopes were linked using AAY, EAAAK linkers and HBHA adjuvant to generate T-cell polyvalent vaccine with a molecular weight of 35.6 kDa containing 322 amino acids residues. In silico analysis of polyvalent construct showed the significant binding affinity (− 15.34 Kcal/mol) with MHC Class-I. This interaction would help to understand our hypothesis, potential activation of T-cells and stimulatory factor of cytokines and GLUT1 receptors. Conclusion Our system-level immunoinformatics approach is suitable for designing potential polyvalent therapeutic vaccine candidates for T2DM by reducing hyperglycemia and enhancing metabolic activities through the immune system.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Pakistan.
| | - Hiba Ashfaq
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Sidra Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Fahad Munir
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Muhammad Babar Jamshed
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jake Chen
- Informatics Institute, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
10
|
Banerjee A, Singh J. Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: Current perspective and translational strategies. Bioeng Transl Med 2020; 5:e10150. [PMID: 32440558 PMCID: PMC7237149 DOI: 10.1002/btm2.10150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated type 2 diabetes mellitus (T2DM) is characterized by low-grade chronic systemic inflammation that arises primarily from the white adipose tissue. The interplay between various adipose tissue-derived chemokines drives insulin resistance in T2DM and has therefore become a subject of rigorous investigation. The adipocytokines strongly associated with glucose homeostasis include tumor necrosis factor-α, various interleukins, monocyte chemoattractant protein-1, adiponectin, and leptin, among others. Remodeling the adipose tissue inflammasome in obesity-associated T2DM is likely to treat the underlying cause of the disease and bring significant therapeutic benefit. Various strategies have been adopted or are being investigated to modulate the serum/tissue levels of pro- and anti-inflammatory adipocytokines to improve glucose homeostasis in T2DM. These include use of small molecule agonists/inhibitors, mimetics, antibodies, gene therapy, and other novel formulations. Here, we discuss adipocytokines that are strongly associated with insulin activity and therapies that are under investigation for modulation of their levels in the treatment of T2DM.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| | - Jagdish Singh
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| |
Collapse
|
11
|
Lu K, Su B, Meng X. Recent Advances in the Development of Vaccines for Diabetes, Hypertension, and Atherosclerosis. J Diabetes Res 2018; 2018:1638462. [PMID: 30345314 PMCID: PMC6174738 DOI: 10.1155/2018/1638462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
Vaccines are commonly used in the prevention of infectious diseases. The basic principle of vaccination is to use specific antigens, endogenous or exogenous to stimulate immunity against the specific antigens or cells producing them. Autoantigen or oligo vaccination has been used for disease animal models. More recently humanized monoclonal antibodies have been successfully used for the treatment of neoplastic disorders or familial hypercholesterolemia. Humanized monoclonal antibody therapy needs repeated injection, and the therapy is expensive. Therapeutic vaccination can lead to persistent immunized or immune tolerant against the therapeutic molecule(s) or site. However, immunization against those endogenous substances may also elicit persistent autoimmune reaction or destruction that do harm to health. Therefore, rigorous studies are needed before any clinical application. In this review, we briefly reviewed vaccines used in protection against common metabolic diseases including atherosclerosis, hypertension, and diabetes mellitus.
Collapse
Affiliation(s)
- Kongye Lu
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Benli Su
- Department of Clinical Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Xiuxiang Meng
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
12
|
Zhang Y, Yu XL, Zhu J, Liu SY, Liu XM, Dong QX, Chai JQ, Liu RT. Intravenous immunoglobulin improves glucose control and β-cell function in human IAPP transgenic mice by attenuating islet inflammation and reducing IAPP oligomers. Int Immunopharmacol 2017; 54:145-152. [PMID: 29145032 DOI: 10.1016/j.intimp.2017.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by β-cell loss, insulin resistance, islet inflammation and amyloid deposits derived from islet amyloid polypeptide (IAPP). Reducing toxic IAPP oligomers and inhibiting islet inflammation may provide therapeutic benefit in treating T2DM. Intravenous immunoglobulin (IVIg) is an efficient anti-inflammatory and immunomodulatory agent for the treatment of several autoimmune or inflammatory neurological diseases. However, whether IVIg has therapeutic potential on T2DM remains unclear. In present study, we showed that IVIg treatment significantly improved glucose control and insulin sensitivity, and prevented β-cell apoptosis by lowering toxic IAPP oligomer levels, attenuating islet inflammation and activating autophagy in human IAPP transgenic mouse model. These results suggest that IVIg is a promising therapeutic potential for T2DM treatment.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Shandong Agricultural University, Taian, 271018, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu-Ying Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Meng Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quan-Xiu Dong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Qian Chai
- Shandong Agricultural University, Taian, 271018, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
13
|
TRPV1: A Potential Therapeutic Target in Type 2 Diabetes and Comorbidities? Trends Mol Med 2017; 23:1002-1013. [DOI: 10.1016/j.molmed.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
|