1
|
Han L, Miao J, Ding M, Fan Q, Wang X, Pan L. Role of NR5A2 in regulating sex differentiation, steroidogenesis, and gonadal development in Chlamys farreri. J Steroid Biochem Mol Biol 2025; 248:106690. [PMID: 39914682 DOI: 10.1016/j.jsbmb.2025.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Chlamys farreri is a commercially important bivalve species in global aquaculture. However, research on the mechanisms regulating its sex differentiation and reproduction remains relatively sparse. In this study, the role of nuclear receptor subfamily 5 group A member 2 (NR5A2) in sex differentiation, steroidogenesis, and gonadal development in C. farreri was investigated using a 28-day RNA interference experiment. RNA-seq data analysis revealed differentially expressed genes between males and females following NR5A2 knockdown. Weighted gene co-expression network analysis (WGCNA) further identified gene modules closely associated with reproductive development, with the yellow module demonstrating a significant correlation with the sex phenotype. Gene set enrichment analysis (GSEA) identified several signaling pathways related to reproduction that were suppressed, including ovarian follicle development, cholesterol metabolism, and ovarian steroidogenesis. Based on the above analysis, we identified 25 differentially expressed genes linked to these processes. Histological observations revealed that NR5A2 knockdown significantly delayed gonadal development in both sexes of scallops, as indicated by a notable decrease in follicular cell number and size. Taken together, NR5A2 knockdown significantly affected signaling pathways related to cholesterol metabolism, ovarian steroidogenesis, sex differentiation and gonadal development, providing a novel theoretical basis for understanding sex differentiation and reproductive development in invertebrates.
Collapse
Affiliation(s)
- Lianxue Han
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Qinhuangdao Marine Environmental Monitoring Central Station of SOA, Qinhuangdao 066002, PR China
| | - Qichao Fan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xuening Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
2
|
Zeng Z, Ni J, Huang Z, Tan Q. Expression and functional analysis of Fushi Tarazu transcription factor 1 (FTZ-F1) in the regulation of steroid hormones during the gonad development of Fujian Oyster, Crassostrea angulata. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111668. [PMID: 38797241 DOI: 10.1016/j.cbpa.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3β-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.
Collapse
Affiliation(s)
- Zhen Zeng
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Jianbin Ni
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Qianglai Tan
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China.
| |
Collapse
|
3
|
Dissecting the Isoform-Specific Roles of FTZ-F1 in the Larval–Larval and Larval–Pupal Ecdyses in Henosepilachna vigintioctopunctata. INSECTS 2022; 13:insects13030228. [PMID: 35323526 PMCID: PMC8951217 DOI: 10.3390/insects13030228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Fushi Tarazu Factor-1 (FTZ-F1) plays a crucial regulatory role in molting in insects. It is hypothesized that, by alternative transcription start and splicing, the FTZ-F1 gene generates two isomers (α- and βFTZ-F1) that exert isoform-specific roles in non-Drosophilid insects. In the present paper, we first unveiled that the same post-transcriptional processing in FTZ-F1 occurred in coleopterans, lepidopterans, dipterans and hymenopterans. We then found that αFTZ-F1 and βFTZ-F1 were actively transcribed throughout the development, from embryo to adult, in Henosepilachna vigintioctopunctata. Moreover, by RNA interference, we confirmed that both FTZ-F1 isoforms act as regulators in larval–larval molting and βFTZ-F1 is involved in the regulation of the larval–pupal transition. Abstract Fushi Tarazu Factor 1 (FTZ-F1), a member of the nuclear receptor superfamily, is the downstream factor of 20-hydroxyecdysone signaling. In Drosophila melanogaster, alternative transcription start and splicing in the FTZ-F1 gene generate αFTZ-F1 and βFTZ-F1 isoforms, which are vital for pair-rule segmentation in early embryogenesis and post-embryonic development, respectively. However, whether the same mRNA isoforms are present and exert the conservative roles remains to be clarified in other insects. In the present paper, we first mined the genomic data of representative insect species and unveiled that the same post-transcriptional processing in FTZ-F1 occurred in coleopterans, lepidopterans, dipterans and hymenopterans. Our expression data in Henosepilachna vigintioctopunctata, a serious polyphagous defoliator damaging a wide range of crops in Solanaceae and Cucurbitaceae, showed that both αFTZ-F1 and βFTZ-F1 were actively transcribed throughout the development, from embryo to adult. The RNA interference-aided knockdown of both isoforms completely arrested larval ecdysis from the third to the fourth instar, in contrast to the depletion of either isoform. In contrast, silencing βFTZ-F1, rather than αFTZ-F1, severely impaired the larval–pupal transformation. We accordingly propose that both FTZ-F1 isoforms are essential but mutually interchangeable for larval–larval molting, while βFTZ-F1 is necessary for the larval–pupal transition and sufficient to exert the role of both FTZ-F1s during larval–pupal metamorphosis in H. vigintioctopunctata.
Collapse
|
4
|
Perez CAG, Adachi S, Nong QD, Adhitama N, Matsuura T, Natsume T, Wada T, Kato Y, Watanabe H. Sense-overlapping lncRNA as a decoy of translational repressor protein for dimorphic gene expression. PLoS Genet 2021; 17:e1009683. [PMID: 34319983 PMCID: PMC8351930 DOI: 10.1371/journal.pgen.1009683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/09/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are vastly transcribed and extensively studied but lncRNAs overlapping with the sense orientation of mRNA have been poorly studied. We analyzed the lncRNA DAPALR overlapping with the 5´ UTR of the Doublesex1 (Dsx1), the male determining gene in Daphnia magna. By affinity purification, we identified an RNA binding protein, Shep as a DAPALR binding protein. Shep also binds to Dsx1 5´ UTR by recognizing the overlapping sequence and suppresses translation of the mRNA. In vitro and in vivo analyses indicated that DAPALR increased Dsx1 translation efficiency by sequestration of Shep. This regulation was impaired when the Shep binding site in DAPALR was deleted. These results suggest that Shep suppresses the unintentional translation of Dsx1 by setting a threshold; and when the sense lncRNA DAPALR is expressed, DAPALR cancels the suppression caused by Shep. This mechanism may be important to show dimorphic gene expressions such as sex determination and it may account for the binary expression in various developmental processes. Long noncoding RNAs are vastly transcribed throughout the genome. Among them, RNAs overlapping the protein-coding RNA in sense orientation have been poorly studied because of the difficulty in differentiating their sequences from their overlapping coding RNAs although this class of RNAs has been reported to comprise the majority of the long noncoding RNAs. In the crustacean Daphnia magna, a long noncoding RNA, called DAPALR, is transcribed from the male determining gene, Doublesex1, and overlaps with the Doublesex1 5´ UTR. DAPALR activates Doublesex1 but this regulatory mechanism remains unknown. We found the RNA binding protein Shep bound to the Doublesex1 5´ UTR. In vitro and in vivo experiments indicated that Shep suppresses translation of the mRNA and DAPALR increases Doublesex1 translation efficiency by sequestration of Shep. Since male-specific expression of Doublesex1 is also regulated at the transcriptional level, we propose that Shep cancels the unexpected expression of Doublesex1 and maintains the feminized state for sexual dimorphism but DAPALR suppresses this repression by sequestration of Shep. We infer that this mechanism is not only for binary sex regulation but could function in the binary regulation of other genes in various biological processes.
Collapse
Affiliation(s)
| | - Shungo Adachi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Quang Dang Nong
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Toru Natsume
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tadashi Wada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- * E-mail: (HW); (YK)
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- * E-mail: (HW); (YK)
| |
Collapse
|
5
|
The FTZ-F1 gene encodes two functionally distinct nuclear receptor isoforms in the ectoparasitic copepod salmon louse (Lepeophtheirus salmonis). PLoS One 2021; 16:e0251575. [PMID: 34014986 PMCID: PMC8136749 DOI: 10.1371/journal.pone.0251575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/29/2021] [Indexed: 01/21/2023] Open
Abstract
The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic crustacean that annually inflicts substantial losses to the aquaculture industry in the northern hemisphere and poses a threat to the wild populations of salmonids. The salmon louse life cycle consists of eight developmental stages each separated by a molt. Fushi Tarazu Factor-1 (FTZ-F1) is an ecdysteroid-regulated gene that encodes a member of the NR5A family of nuclear receptors that is shown to play a crucial regulatory role in molting in insects and nematodes. Characterization of an FTZ-F1 orthologue in the salmon louse gave two isoforms named αFTZ-F1 and βFTZ-F1, which are identical except for the presence of a unique N-terminal domain (A/B domain). A comparison suggest conservation of the FTZ-F1 gene structure among ecdysozoans, with the exception of nematodes, to produce isoforms with unique N-terminal domains through alternative transcription start and splicing. The two isoforms of the salmon louse FTZ-F1 were expressed in different amounts in the same tissues and showed a distinct cyclical expression pattern through the molting cycle with βFTZ-F1 being the highest expressed isoform. While RNA interference knockdown of βFTZ-F1 in nauplius larvae and in pre-adult males lead to molting arrest, knockdown of βFTZ-F1 in pre-adult II female lice caused disruption of oocyte maturation at the vitellogenic stage. No apparent phenotype could be observed in αFTZ-F1 knockdown larvae, or in their development to adults, and no genes were found to be differentially expressed in the nauplii larvae following αFTZ-F1 knockdown. βFTZ-F1 knockdown in nauplii larvae caused both down and upregulation of genes associated with proteolysis and chitin binding and affected a large number of genes which are in normal salmon louse development expressed in a cyclical pattern. This is the first description of FTZ-F1 gene function in copepod crustaceans and provides a foundation to expand the understanding of the molecular mechanisms of molting in the salmon louse and other copepods.
Collapse
|
6
|
Nguyen ND, Matsuura T, Kato Y, Watanabe H. Caloric restriction upregulates the expression ofDNMT3.1, lacking the conserved catalytic domain, inDaphnia magna. Genesis 2020; 58:e23396. [DOI: 10.1002/dvg.23396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Nhan Duc Nguyen
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering Osaka University Osaka Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering Osaka University Osaka Japan
| |
Collapse
|
7
|
Kato Y, Perez CAG, Mohamad Ishak NS, Nong QD, Sudo Y, Matsuura T, Wada T, Watanabe H. A 5′ UTR-Overlapping LncRNA Activates the Male-Determining Gene doublesex1 in the Crustacean Daphnia magna. Curr Biol 2018; 28:1811-1817.e4. [DOI: 10.1016/j.cub.2018.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|
8
|
Mohamad Ishak NS, Nong QD, Matsuura T, Kato Y, Watanabe H. Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna. PLoS Genet 2017; 13:e1006953. [PMID: 29095827 PMCID: PMC5667737 DOI: 10.1371/journal.pgen.1006953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes-Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination.
Collapse
Affiliation(s)
- Nur Syafiqah Mohamad Ishak
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Quang Dang Nong
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Frontier Research Base of Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
9
|
Giraudo M, Douville M, Cottin G, Houde M. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects. PLoS One 2017; 12:e0171763. [PMID: 28196088 PMCID: PMC5308779 DOI: 10.1371/journal.pone.0171763] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Benzotriazoles (BZTs) are ubiquitous aquatic contaminants used in a wide range of industrial and domestic applications from aircraft deicers to dishwasher tablets. Acute toxicity has been reported in aquatic organisms for some of the BZTs but their mode of action remains unknown. The objectives of this study were to evaluate the transcriptomic response of D. magna exposed to sublethal doses of 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5MeBTR) and 5-chloro-1H-benzotriazole (5ClBTR) using RNA-sequencing and quantitative real-time PCR. Cellular and life-history endpoints (survival, number of neonates, growth) were also investigated. Significant effects on the molting frequency were observed after 21-d exposure to 5MeBTR and 5ClBTR. No effects on molting frequency were observed for BTR but RNA-seq results indicated that this BZT induced the up-regulation of genes coding for cuticular proteins, which could have compensated the molting disruption. Molting in cladocerans is actively controlled by ecdysteroid hormones. Complementary short-term temporal analysis (4- and 8-d exposure) of the transcription of genes related to molting and hormone-mediated processes indicated that the three compounds had specific modes of action. BTR induced the transcription of genes involved in 20-hydroxyecdysone synthesis, which suggests pro-ecdysteroid properties. 5ClBTR exposure induced protein activity and transcriptional levels of chitinase enzymes, associated with an impact on ecdysteroid signaling pathways, which could explain the decrease in molt frequency. Finally, 5MeBTR seemed to increase molt frequency through epigenetic processes. Overall, results suggested that molting effects observed at the physiological level could be linked to endocrine regulation impacts of BZTs at the molecular level.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
- Université Paris Descartes, Paris, France
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| |
Collapse
|