1
|
Xu P, Wang Z, Zhang Y, Han J, Shu C, Liao M, Zhang J, Geng L. Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations. Int J Mol Sci 2025; 26:3497. [PMID: 40331960 PMCID: PMC12027373 DOI: 10.3390/ijms26083497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The larvae of Hyphantria cunea feed on plant leaves, causing significant losses to forestry and agricultural production. At present, cry1 genes such as cry1Ac and cry1Ah are mainly used to control H. cunea. To delay the problem of pest resistance induced by a single insecticidal gene, it is crucial to discover and develop new insecticidal genes or gene combinations. This study found cry9Aa3 and cry9Aa4 showed insecticidal activity against H. cunea. The toxicity of 14 mutants of Cry9Aa3 was analyzed and the LC50 of the triple-amino-acid substitution mutant 316LRG318AAA was 3.69 μg/g, which represents a 1.49-fold increase in insecticidal activity compared to Cry9Aa3. Additionally, enhanced stability of this mutant was detected in the midgut juice of H. cunea. Cry9Aa3 and 316LRG318AAA, in combination with Cry1Ah, demonstrated synergistic effects against H. cunea, with synergistic factors of 4.76 and 8.33, respectively. This study has identified the mutant 316LRG318AAA and its combination with Cry1Ah as exhibiting high toxicity against H. cunea, providing valuable genetic resources for the development of transgenic poplars and holding significant importance for delaying resistance in this pest.
Collapse
Affiliation(s)
- Pengdan Xu
- School of Plant Protection, Anhui Agricultural University, Hefei 230026, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaxing Han
- School of Plant Protection, Anhui Agricultural University, Hefei 230026, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230026, China
| | - Jie Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei 230026, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Toledo-Hernández E, Torres-Quíntero MC, Mancilla-Dorantes I, Sotelo-Leyva C, Delgado-Núñez EJ, Hernández-Velázquez VM, Dunstand-Guzmán E, Salinas-Sánchez DO, Peña-Chora G. Entomopathogenic Bacteria Species and Toxins Targeting Aphids (Hemiptera: Aphididae): A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:943. [PMID: 40265885 PMCID: PMC11944987 DOI: 10.3390/plants14060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aphids (Hemiptera: Aphididae) are cosmopolitan generalist pests of many agricultural crops. Their ability to reproduce rapidly through parthenogenesis allows them to quickly reach population sizes that are difficult to control. Their damage potential is further exacerbated when they act as vectors for plant pathogens, causing diseases in plants. Aphids are typically managed through the widespread use of insecticides, increasing the likelihood of short-term insecticide resistance. However, for the past few decades, entomopathogenic bacteria have been used as an alternative management strategy. Entomopathogenic bacteria have demonstrated their effectiveness for biologically suppressing insect pests, including aphids. In addition to identifying bacterial species that are pathogenic to aphids, research has been conducted on toxins such as Cry, Cyt, Vip, recombinant proteins, and other secondary metabolites with insecticidal activity. Most studies on aphids have been conducted in vitro, exposing them to an artificial diet contaminated with entomopathogenic bacteria or bacterial metabolites for periods ranging from 24 to 96 h. The discovery of new bacterial species with insecticidal potential, as well as the possibility of biotechnological applications through the genetic improvement of crops, will provide more alternatives for managing these agricultural pests in the future. This will also help address challenges related to field application.
Collapse
Affiliation(s)
- Erubiel Toledo-Hernández
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - Mary Carmen Torres-Quíntero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Ilse Mancilla-Dorantes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - Edgar Jesús Delgado-Núñez
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma Guerrero, Iguala de la Independencia C.P. 40020, Guerrero, Mexico;
| | - Víctor Manuel Hernández-Velázquez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Emmanuel Dunstand-Guzmán
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - David Osvaldo Salinas-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Guadalupe Peña-Chora
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| |
Collapse
|
3
|
Feng H, Jander G. Serine proteinase inhibitors from Nicotiana benthamiana, a nonpreferred host plant, inhibit the growth of Myzus persicae (green peach aphid). PEST MANAGEMENT SCIENCE 2024; 80:4470-4481. [PMID: 38666388 DOI: 10.1002/ps.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | | |
Collapse
|
4
|
Tavares CS, Mishra R, Kishk A, Wang X, Ghobrial PN, Killiny N, Bonning BC. The beta pore-forming bacterial pesticidal protein Tpp78Aa1 is toxic to the Asian citrus psyllid vector of the citrus greening bacterium. J Invertebr Pathol 2024; 204:108122. [PMID: 38710321 DOI: 10.1016/j.jip.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Pierre N Ghobrial
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Nabil Killiny
- Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
de Oliveira Dorta S, Attílio LB, Zanardi OZ, Lopes JRS, Machado MA, Freitas-Astúa J. Genetic transformation of 'Hamlin' and 'Valencia' sweet orange plants expressing the cry11A gene of Bacillus thuringiensis as another tool to the management of Diaphorina citri (Hemiptera: Liviidae). J Biotechnol 2023; 368:60-70. [PMID: 37088156 DOI: 10.1016/j.jbiotec.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter spp., the bacteria associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. HLB management has heavily counted on insecticide applications to control the ACP, although there are efforts towards more sustainable alternatives. In previous work, our group assessed the potential bioactivity of different strains of Bacillus thuringiensis (Eubacteriales: Bacillaceae) (Bt) containing cry/cyt genes as feasible tools to control ACP nymphs. Here, we report an attempt to use the cry11A gene from Bt to produce transgenic sweet orange plants using two promoters. For the genetic transformation, 'Hamlin' and 'Valencia' sweet orange seedlings were used as sources of explants. Transgenic plants were detected by polymerase chain reaction (PCR) with specific primers, and the transgene copy number was confirmed by Southern blot analyses. Transcript expression levels were determined by qPCR. Mortality assays of D. citri nymphs were carried out in a greenhouse, and the effect of the events tested ranged from 22 to 43% at the end of the five-day exposure period. To our knowledge, this is the first manuscript reporting the production of citrus plants expressing the Bt cry11A gene for the management of D. citri nymphs.
Collapse
Affiliation(s)
- Sílvia de Oliveira Dorta
- Programa de Pós-Graduação em Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil; Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil.
| | - Lísia Borges Attílio
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil; Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Odimar Zanuzo Zanardi
- Departamento de Ensino, Pesquisa e Extensão, Instituto Federal de Santa Catarina (IFSC), 89.900-000, São Miguel do Oeste, Santa Catarina, Brasil
| | - João Roberto Spotti Lopes
- Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Embrapa Mandioca e Fruticultura, 44.380-000, Cruz das Almas, Bahia, Brazil; Unidade Laboratorial de Referência em Biologia Molecular Aplicada/Instituto Biológico (ULRBMA/IB), 04.014-900, São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
7
|
Zhao XD, Zhang BW, Fu LJ, Li QL, Lin Y, Yu XQ. Possible Insecticidal Mechanism of Cry41-Related Toxin against Myzus persicae by Enhancing Cathepsin B Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4607-4615. [PMID: 32227950 DOI: 10.1021/acs.jafc.0c01020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cry toxins produced by Bacillus thuringiensis are well known for their high insecticidal activities against Lepidoptera, Diptera, and Coleoptera; however, their activities against Aphididae are very low. Recently, it has been reported that a Cry41-related toxin exhibited moderate activity against the aphid Myzus persicae, and thus, it is highly desirable to uncover its unique mechanism. In this paper, we report that Cathepsin B, calcium-transporting ATPase, and symbiotic bacterial-associated protein ATP-dependent-6-phosphofructokinase were pulled down from the homogenate of M. persicae as unique proteins that possibly bound to Cry41-related toxin. Cathepsin B has been reported to cleave and inactivate antiapoptotic proteins and plays a role in caspase-initiated apoptotic cascades. In this study, Cathepsin B was expressed in Escherichia coli and purified, and in vitro interaction between recombinant Cathepsin B and Cry41-related toxin was demonstrated. Interestingly, we found that addition of Cry41-related toxin obviously enhanced Cathepsin B activity. We propose a model for the mechanism of Cry41-related toxin as follows: Cry41-related toxin enters the aphid cells and enhances Cathepsin B activity, resulting in acceleration of apoptosis of aphid cells.
Collapse
Affiliation(s)
- Xiao-Di Zhao
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Bin-Wu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Jun Fu
- Fujian Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, Fujian 351100, PR China
| | - Qi-Lin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Rauf I, Asif M, Amin I, Naqvi RZ, Umer N, Mansoor S, Jander G. Silencing cathepsin L expression reduces Myzus persicae protein content and the nutritional value as prey for Coccinella septempunctata. INSECT MOLECULAR BIOLOGY 2019; 28:785-797. [PMID: 30980445 DOI: 10.1111/imb.12589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut-expressed aphid genes, which may be more easily inhibited by RNA interference (RNAi) constructs, are attractive targets for pest control efforts involving transgenic plants. Here we show that expression of cathepsin L, which encodes a cysteine protease that functions in aphid guts, can be reduced by expression of an RNAi construct in transgenic tobacco. The effectiveness of this approach is demonstrated by up to 80% adult mortality, reduced fecundity, and delayed nymph production of Myzus persicae (green peach aphids) when cathepsin L expression was reduced by plant-mediated RNAi. Consistent with the function of cathepsin L as a gut protease, M. persicae fed on the RNAi plants had a lower protein content in their bodies and excreted more protein and/or free amino acids in their honeydew. Larvae of Coccinella septempunctata (seven-spotted ladybugs) grew more slowly on aphids having reduced cathepsin L expression, suggesting that prey insect nutritive value, and not just direct negative effects of the RNAi construct, needs to be considered when producing transgenic plants for RNAi-mediated pest control.
Collapse
Affiliation(s)
- I Rauf
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Ithaca, NY, USA
| | - M Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - I Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - R Z Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - N Umer
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Ithaca, NY, USA
| | - S Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - G Jander
- Boyce Thompson Institute, Ithaca, NY, USA
| |
Collapse
|
9
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
10
|
A novel cry52Ca1 gene from an Indian Bacillus thuringiensis isolate is toxic to Helicoverpa armigera (cotton boll worm). J Invertebr Pathol 2018; 159:137-140. [DOI: 10.1016/j.jip.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/27/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
|
11
|
Determination of mosquito Larvicidal potential of Bacillus thuringiensis Cry11Ba fusion protein through molecular docking. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Engineering resistance to virus transmission. Curr Opin Virol 2017; 26:20-27. [PMID: 28750351 DOI: 10.1016/j.coviro.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Engineering plants for resistance to virus transmission by invertebrate vectors has lagged behind other forms of plant protection. Vectors typically transmit more than one virus. Thus, vector resistance could provide a wider range of protection than defenses directed solely against one virus or virus group. We discuss current knowledge of vector-host-virus interactions, the roles of viral gene products in host and vector manipulation, and the effects of semiochemicals on host-vector interactions, and how this knowledge could be employed to disrupt transmission dynamics. We also discuss how resistance to vectors could be generated through genetic engineering or gene editing or indirectly through use of biocontrol using plant-resident viruses that infect vectors.
Collapse
|
13
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|