1
|
Kazmi F, Shrestha N, Liu TFD, Foord T, Heesen P, Booth S, Dodwell D, Lord S, Yeoh KW, Blagden SP. Next-generation sequencing for guiding matched targeted therapies in people with relapsed or metastatic cancer. Cochrane Database Syst Rev 2025; 3:CD014872. [PMID: 40122129 PMCID: PMC11930395 DOI: 10.1002/14651858.cd014872.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Matched targeted therapies (MTT) given alone or in combination with systemic anti-cancer therapies have delivered proven survival benefit for many people with newly diagnosed cancer. However, there is little evidence of their effectiveness in the recurrent or late-stage setting. With this uncertainty, alongside the perception that late-stage cancers are too genetically heterogenous or too mutationally diverse to benefit from matched targeted therapies, next-generation sequencing (NGS) of tumours in people with refractory cancer remains a low priority. As a result, next-generation sequencing testing of recurrent or late-stage disease is discouraged. We lack evidence to support the utility of next generation sequencing in guiding matched targeted therapies in this setting. OBJECTIVES To evaluate the benefits and harms of matched targeted therapies in people with advanced cancers in randomised controlled trials. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, ClinicalTrials.gov, and the World Health Organisation International Clinical Trials Registry Platform (WHO-ICTRP) search portal up to 30th October 2024. We also screened reference lists of included studies and also the publications that cited these studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that had enroled participants with advanced/refractory solid or haematological cancers who had progressed through at least one line of standard anti-cancer systemic therapy. To be eligible, all participants should have received matched targeted therapy based on next-generation sequencing carried out on their tumour (tumour tissue, blood or bone marrow). DATA COLLECTION AND ANALYSIS We systematically searched medical databases (e.g. MEDLINE, Embase) and trial registers for randomised controlled trials (RCTs). Outcomes of interest were progression-free survival (PFS), overall survival (OS), overall response rates (ORR), serious (grade 3 or 4) adverse events (AEs) and quality of life (QOL). We used a random-effects model to pool outcomes across studies and compared predefined subgroups using interaction tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment of certainty was used to evaluate the quality of evidence. MAIN RESULTS We identified a total of 37 studies, out of which 35 studies (including 9819 participants) were included in the meta-analysis. All included studies compared a matched targeted therapy intervention to standard-of-care treatment, non-matched targeted therapies or no treatment (best supportive care): Matched targeted therapy versus standard-of-care treatment Matched targeted therapy (MTT) compared with standard systematic therapy probably reduces the risk of disease progression by 34% (hazard ratio (HR) = 0.66, 95% confidence interval (CI) 0.59 to 0.74; 14 studies, 3848 participants; moderate-certainty evidence). However, MTT might have little to no difference in risk of death (HR = 0.85, 95% CI 0.75 to 0.97; 14 studies, 3848 participants; low-certainty evidence) and may increase overall response rates (low-certainty evidence). There was no clear evidence of a difference in severe (grade 3/4) adverse events between matched targeted therapy and standard-of-care treatment (low-certainty evidence). There was limited evidence of a difference in quality of life between groups (very low-certainty of evidence). Matched targeted therapy in combination with standard-of-care treatment versus standard-of-care treatment alone Matched targeted therapy in combination with standard-of-care treatment compared with standard-of-care treatment alone probably reduces the risk of disease progression by 39% (HR = 0.61, 95% CI 0.53-0.70, 14 studies, 2,637 participants; moderate-certainty evidence) and risk of death by 21% (HR = 0.79, 95% CI 0.70 to 0.89; 11 studies, 2575 participants, moderate-certainty evidence). The combination of MTT and standard-of-care treatment may also increase overall response rates (low-certainty evidence). There was limited evidence of a difference in the incidence of severe adverse events (very low-certainty evidence) and quality of life between the groups (very low-certainty of evidence). Matched targeted therapy versus non-matched targeted therapy Matched targeted therapy compared with non-matched targeted therapy probably reduces the risk of disease progression by 24% (HR = 0.76, 95% CI 0.64 to 0.89; 3 studies, 1568 participants; moderate-certainty evidence) and may reduce the risk of death by 25% (HR = 0.75, 95% CI 0.65 to 0.86, 1307 participants; low-certainty evidence). There was little to no effect on overall response rates between MTT and non-MTT. There was no clear evidence of a difference in overall response rates (low-certainty evidence) and severe adverse events between MTT and non-MTT (low-certainty evidence). None of the studies comparing MTT and non-MTT reported quality of life. Matched targeted therapy versus best supportive care Matched targeted therapy compared with the best supportive care (BSC) i.e. no active treatment probably reduces the risk of disease progression by 63% (HR 0.37, 95% CI 0.28 to 0.50; 4 studies, 858 participants; moderate-certainty evidence). There was no clear evidence of a difference in overall survival between groups (HR = 0.88, 95% CI 0.73 to 1.06, 3 studies, 783 participants; low-certainty evidence). There was no clear evidence of a difference in overall response rates (very low-certainty of evidence) and incidence of severe adverse events (very low-certainty of evidence) between the groups. Quality of life was reported in a single study but did not provide composite scores. Risk of bias The overall risk of bias was judged low for eight studies, unclear for two studies, and the remaining 27 studies were high risk. AUTHORS' CONCLUSIONS Matched targeted therapies guided by next-generation sequencing in people with advanced cancer prolongs the time before cancer progresses compared to standard therapies. However, there is limited evidence to suggest that it prolongs overall survival, improves the quality of life or increases adverse events. Importantly, this review supports equitable access to next-generation sequencing technology for all people with advanced cancer and offers them the opportunity to access genotype-matched targeted therapies.
Collapse
Affiliation(s)
- Farasat Kazmi
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Nipun Shrestha
- Health Evidence Synthesis, Recommendations and Impact (HESRI), School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Tik Fung Dave Liu
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | | | | | - Stephen Booth
- Department of Haematology, Royal Berkshire Hospital, Reading, UK
| | - David Dodwell
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kheng-Wei Yeoh
- Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
2
|
Senapati J, Sasaki K, Issa GC, Lipton JH, Radich JP, Jabbour E, Kantarjian HM. Management of chronic myeloid leukemia in 2023 - common ground and common sense. Blood Cancer J 2023; 13:58. [PMID: 37088793 PMCID: PMC10123066 DOI: 10.1038/s41408-023-00823-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
With the improving knowledge of CML and its management, the goals of therapy need to be revisited to ensure an optimal use of the BCR::ABL1 TKIs in the frontline and later-line therapy of CML. In the frontline therapy of CML in the chronic phase (CML-CP), imatinib and the three second-generation TKIs (bosutinib, dasatinib and nilotinib) are associated with comparable survival results. The second-generation TKIs may produce earlier deep molecular responses, hence reducing the time to reaching a treatment-free remission (TFR). The choice of the second-generation TKI versus imatinib in frontline therapy is based on the treatment aims (survival, TFR), the CML risk, the drug cost, and the toxicity profile with respect to the patient's comorbidities. The TKI dosing is more flexible than has been described in the registration trials, and dose adjustments can be considered both in the frontline and later-line settings (e.g., dasatinib 50 mg frontline therapy; dose adjusted schedules of bosutinib and ponatinib), as well as during an ongoing TKI therapy to manage toxicities, before considering changing the TKI. In patients who are not candidates for TFR, BCR::ABL1 (International Scale) transcripts levels <1% are acceptable, result in virtually similar survival as with deeper molecular remissions, and need not warrant a change of TKI. For patients with true resistance to second-generation TKIs or with the T315I gatekeeper mutation, the third-generation TKIs are preferred. Ponatinib should be considered first because of the cumulative experience and results in the CML subsets, including in T315I-mutated CML. A response-based dosing of ponatinib is safe and leads to high TKI compliance. Asciminib is a third-generation TKI with possibly a better toxicity profile, but lesser activity in T315I-mutated CML. Olverembatinib is another potent third-generation TKI with early promising results.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey H Lipton
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Vráblová L, Divoký V, Kořalková P, Poláková KM, Kriegová E, Janská R, Grohmann J, Holzerová M, Papajík T, Faber E. Deep Molecular Response Achieved with Chemotherapy, Dasatinib and Interferon α in Patients with Lymphoid Blast Crisis of Chronic Myeloid Leukaemia. Int J Mol Sci 2023; 24:ijms24032050. [PMID: 36768374 PMCID: PMC9916434 DOI: 10.3390/ijms24032050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The treatment outcome in patients with chronic myeloid leukaemia (CML) in blast crisis (BC) is unsatisfactory despite the use of allogeneic stem cell transplantation (ASCT). Moreover, in some patients ASCT is contraindicated, with limited treatment options. We report the case series of two patients with lymphoid BC CML in whom ASCT was not approachable. The first patient developed BC two months after diagnosis in association with dic(7;9)(p11.2;p11.2) and T315I mutation. Blast crisis with central nervous system leukemic involvement and K611N mutation of the SETD2 gene developed abruptly in the second patient five years after ceasing treatment with nilotinib in major molecular response (MMR) at the patient's request. Both underwent one course of chemotherapy in combination with rituximab and imatinib, followed by dasatinib and interferon α (INFα) treatment in the first and dasatinib alone in the second case. Deep molecular response (DMR; MR 4.0) was achieved within a short time in both cases. It is probable that DMR was caused by a specific immune response to CML cells, described in both agents. The challenging medical condition that prompted these case series, and the subsequent results, suggest a re-visit to the use of a combination of well-known drugs as an area for further investigation.
Collapse
Affiliation(s)
- Lucia Vráblová
- Department of Haemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
- Correspondence: (L.V.); (E.F.); Tel.: +421-739602503 (L.V.); +421-721096619 (E.F.)
| | - Vladimír Divoký
- Department of Biology, Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | - Pavla Kořalková
- Department of Biology, Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | | | - Eva Kriegová
- Department of Immunology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | - Romana Janská
- Department of Haemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | - Jan Grohmann
- Department of Haemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | - Milena Holzerová
- Department of Haemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | - Tomáš Papajík
- Department of Haemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
| | - Edgar Faber
- Department of Haemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University, 779 00 Olomouc, Czech Republic
- Correspondence: (L.V.); (E.F.); Tel.: +421-739602503 (L.V.); +421-721096619 (E.F.)
| |
Collapse
|
4
|
Stukan I, Gryzik M, Hoser G, Want A, Grabowska-Pyrzewicz W, Zdioruk M, Napiórkowska M, Cieślak M, Królewska-Golińska K, Nawrot B, Basak G, Wojda U. Novel Dicarboximide BK124.1 Breaks Multidrug Resistance and Shows Anticancer Efficacy in Chronic Myeloid Leukemia Preclinical Models and Patients' CD34 +/CD38 - Leukemia Stem Cells. Cancers (Basel) 2022; 14:cancers14153641. [PMID: 35892900 PMCID: PMC9332833 DOI: 10.3390/cancers14153641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Chemotherapy is a first line treatment in many cancer types, but the constant exposition to chemotherapeutics often leads to therapy resistance. An example is chronic myeloid leukemia that, due to the use of tyrosine kinase inhibitors such as imatinib, remains manageable, however incurable. Overall, 20–25% of imatinib responders develop secondary resistance, and among them, 20–40% is due to mechanisms such as expression of P-glycoprotein (MDR1) or leukemia stem cells’ mechanisms of survival and cancer regrowth. This study provides the first evidence from animal and cellular models that this resistance can be overcome with the novel dicarboximide BK124.1. The compound causes no visible toxicity in mice, and has proper pharmacokinetics for therapeutic applications. It was efficient against both multidrug resistant CML blasts and CD34+/CD38− leukemia stem cells coming from CML patients. Future development of BK124.1 could offer curative treatment of CML and of other cancers resistant or intolerant to current chemotherapy. Abstract The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients’ stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 μM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38− subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.
Collapse
Affiliation(s)
- Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Grażyna Hoser
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
- Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Wioleta Grabowska-Pyrzewicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Mikolaj Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Mariola Napiórkowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
- Correspondence: ; Tel.: +48-22-5892-578
| |
Collapse
|
5
|
Gallipoli P, Clark RE, Byrne J, Apperley JF, Milojkovic D, Foroni L, Goldman JM, O'Brien S. The UK SPIRIT 1 trial in newly diagnosed chronic myeloid leukaemia. Br J Haematol 2022; 196:e55-e57. [PMID: 34993961 PMCID: PMC7613110 DOI: 10.1111/bjh.17961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard E Clark
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Jenny Byrne
- Department of Haematology, Nottingham University Hospital Trust, Nottingham, UK
| | - Jane F Apperley
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Dragana Milojkovic
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Letizia Foroni
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - John M Goldman
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Stephen O'Brien
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
6
|
Leukemia Stem Cells as a Potential Target to Achieve Therapy-Free Remission in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13225822. [PMID: 34830976 PMCID: PMC8616035 DOI: 10.3390/cancers13225822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Leukemia stem cells (LSCs, also known as leukemia-initiating cells) not only drive leukemia initiation and progression, but also contribute to drug resistance and/or disease relapse. Therefore, eradication of every last LSC is critical for a patient's long-term cure. Chronic myeloid leukemia (CML) is a myeloproliferative disorder that arises from multipotent hematopoietic stem and progenitor cells. Tyrosine kinase inhibitors (TKIs) have dramatically improved long-term outcomes and quality of life for patients with CML in the chronic phase. Point mutations of the kinase domain of BCR-ABL1 lead to TKI resistance through a reduction in drug binding, and as a result, several new generations of TKIs have been introduced to the clinic. Some patients develop TKI resistance without known mutations, however, and the presence of LSCs is believed to be at least partially associated with resistance development and CML relapse. We previously proposed targeting quiescent LSCs as a therapeutic approach to CML, and a number of potential strategies for targeting insensitive LSCs have been presented over the last decade. The identification of specific markers distinguishing CML-LSCs from healthy HSCs, and the potential contributions of the bone marrow microenvironment to CML pathogenesis, have also been explored. Nonetheless, 25% of CML patients are still expected to switch TKIs at least once, and various TKI discontinuation studies have shown a wide range in the incidence of molecular relapse (from 30% to 60%). In this review, we revisit the current knowledge regarding the role(s) of LSCs in CML leukemogenesis and response to pharmacological treatment and explore how durable treatment-free remission may be achieved and maintained after discontinuing TKI treatment.
Collapse
|
7
|
Matsushita M. Novel Treatment Strategies Utilizing Immune Reactions against Chronic Myelogenous Leukemia Stem Cells. Cancers (Basel) 2021; 13:cancers13215435. [PMID: 34771599 PMCID: PMC8582551 DOI: 10.3390/cancers13215435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Although tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myelogenous leukemia (CML), leukemic stem cells (LSCs) are known to be resistant to TKIs. As a result, the application of immunotherapies against LSCs may cure CML. Abstract Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
8
|
Mu H, Zhu X, Jia H, Zhou L, Liu H. Combination Therapies in Chronic Myeloid Leukemia for Potential Treatment-Free Remission: Focus on Leukemia Stem Cells and Immune Modulation. Front Oncol 2021; 11:643382. [PMID: 34055612 PMCID: PMC8155539 DOI: 10.3389/fonc.2021.643382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Although tyrosine Kinase Inhibitors (TKI) has revolutionized the treatment of chronic myeloid leukemia (CML), patients are not cured with the current therapy modalities. Also, the more recent goal of CML treatment is to induce successful treatment-free remission (TFR) among patients achieving durable deep molecular response (DMR). Together, it is necessary to develop novel, curative treatment strategies. With advancements in understanding the biology of CML, such as dormant Leukemic Stem Cells (LSCs) and impaired immune modulation, a number of agents are now under investigation. This review updates such agents that target LSCs, and together with TKIs, have the potential to eradicate CML. Moreover, we describe the developing immunotherapy for controlling CML.
Collapse
Affiliation(s)
- Hui Mu
- Medical School, Nantong University, Nantong, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Jia
- Medical School, Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
The Combination of Interferon-Alpha and Ponatinib Enables Faster and Deeper Molecular Responses in Patient with De Novo Blast Crisis of CML: Interferon-Alpha May Return as a CML Treatment. Case Rep Hematol 2021; 2021:5518727. [PMID: 34055427 PMCID: PMC8112961 DOI: 10.1155/2021/5518727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/22/2023] Open
Abstract
In the era of tyrosine kinase inhibitor (TKI) treatment, its effectiveness in treating chronic myelogenous leukemia (CML) has been improved, ensuring the same prognosis as that of healthy people of the same age. However, there are some patients with de novo blast crisis that undergoes acute conversion from the time of diagnosis and does not respond to TKI treatment, especially in the older patients. Here, we present a case of an older patient with de novo lymphoid crisis who was first treated with a combination of TKI and chemotherapy, but it was difficult to maintain a durable deep molecular response (DMR). After he achieved major molecular response (MMR) or less, it was possible to suppress IS% to DMR by performing a combined treatment with interferon-α (IFN-α) and ponatinib. It is considered that DMR can be maintained by the combination of the two-way action of IFN-α, that is, the transfer of dormant CML stem cells to the cellcycle and the activation of a specific immune response to CML cells. This clinical result suggests the possibility of the re-emergence of IFN-α, which has been used a therapeutic drug in the past.
Collapse
|
10
|
Breccia M, Abruzzese E, Annunziata M, Luciano L, Sica S. Clinical and Psychological Factors to Consider in Achieving Treatment-Free Remission in Patients With Chronic Myeloid Leukemia. Front Oncol 2021; 11:631570. [PMID: 33777785 PMCID: PMC7987948 DOI: 10.3389/fonc.2021.631570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment of chronic myeloid leukemia (CML) has evolved dramatically in recent years. In this regard, the introduction of second-generation tyrosine kinase inhibitors (TKI) has revolutionized therapeutic goals, and it is now desirable to obtain treatment-free remission (TFR), i.e. when a patient who has stopped TKI therapy maintains a major molecular response and does not need to restart treatment. This report summarizes the main findings from a group of expert hematologists in Italy who met to discuss treatment and management of patients with CML with focus on broad-ranging aspects of TFR. A survey was used to obtain information about the clinicians' experience with TFR and to better understand the clinical and psychological issues that patients and physicians face when considering TFR. The overall goal was to explore the possibility of discontinuing treatment from multiple points of view, considering both clinical aspects of TFR as well as psychological management of patients. Practical information is provided on aspects associated with initiating TFR, clinical data supporting it, the role of monitoring, and management of discontinuation-related adverse events. This publication outlines many of the shortcomings and highlights proposed solutions for routine clinical practice, and provides an overview of the literature relative to TFR.
Collapse
Affiliation(s)
- Massimo Breccia
- Hematology, Department of Precision and Translational Medicine, Policlinico Umberto 1, Sapienza University, Rome, Italy
| | - Elisabetta Abruzzese
- Division of Hematology, Ospedale S. Eugenio, Tor Vergata University, Roma, Italy
| | - Mario Annunziata
- Hematology Division, Azienda Ospedaliera di Rilievo Nazionale Cardarelli, Naples, Italy
| | - Luigia Luciano
- Hematology - Department of Clinical Medicine and Surgery, Federico II University, Napoli, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Roma, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
11
|
Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia 2021; 35:1229-1242. [PMID: 33833387 PMCID: PMC8102187 DOI: 10.1038/s41375-021-01238-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
The quest for treatment-free remission (TFR) and deep molecular response (DMR) in chronic myeloid leukemia (CML) has been profoundly impacted by tyrosine kinase inhibitors (TKIs). Immunologic surveillance of residual leukemic cells is hypothesized to be one of the critical factors in successful TFR, with self-renewing leukemic stem cells implicated in relapse. Immunological characterization in CML may help to develop novel immunotherapies that specifically target residual leukemic cells upon TKI discontinuation to improve TFR rates. This review focuses on immune dysfunction in newly diagnosed CML patients, and the role that TKIs and other therapies have in restoring immune surveillance. Immune dysfunction and immunosurveillance in CML points towards several emerging areas in the key goals of DMR and TFR, including: (1) Aspects of innate immune system, in particular natural killer cells and the newly emerging target plasmacytoid dendritic cells. (2) The adaptive immune system, with promise shown in regard to leukemia-associated antigen vaccine-induced CD8 cytotoxic T-cells (CTL) responses, increased CTL expansion, and immune checkpoint inhibitors. (3) Immune suppressive myeloid-derived suppressor cells and T regulatory cells that are reduced in DMR and TFR. (4) Immunomodulator mesenchymal stromal cells that critically contribute to leukomogenesis through immunosuppressive properties and TKI- resistance. Therapeutic strategies that leverage existing immunological approaches include donor lymphocyte infusions, that continue to be used, often in combination with TKIs, in patients relapsing following allogeneic stem cell transplant. Furthermore, previous standards-of-care, including interferon-α, hold promise in attaining TFR in the post-TKI era. A deeper understanding of the immunological landscape in CML is therefore vital for both the development of novel and the repurposing of older therapies to improve TFR outcomes.
Collapse
|
12
|
C/EBPβ is a critical mediator of IFN-α-induced exhaustion of chronic myeloid leukemia stem cells. Blood Adv 2020; 3:476-488. [PMID: 30755436 DOI: 10.1182/bloodadvances.2018020503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/12/2019] [Indexed: 11/20/2022] Open
Abstract
Even in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL-expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3' distal enhancer of Cebpb that contains tandemly aligned IFN-γ-activated site elements. Suppression or deletion of the IFN-γ-activated site elements abrogated IFN-α-dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage- CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α-induced differentiation and exhaustion of CML stem cells.
Collapse
|
13
|
Özgür Yurttaş N, Eşkazan AE. Novel therapeutic approaches in chronic myeloid leukemia. Leuk Res 2020; 91:106337. [PMID: 32200189 DOI: 10.1016/j.leukres.2020.106337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
The tyrosine kinase inhibitors (TKIs) have revolutionized the management of chronic myeloid leukemia (CML) and BCR-ABL1 inhibitors form the mainstay of CML treatment. Although patients with CML generally do well under TKI therapy, there is a subgroup of patients who are resistant and/or intolerant to TKIs. In these group of patients, there is the need of additional treatment strategies. In this review, we provide an update on the current knowledge of these novel treatment approaches that can be used alone and/or in combination with TKIs.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Clinical Trials as Topic
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Everolimus/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Gene Expression
- Histone Deacetylase Inhibitors/therapeutic use
- Homoharringtonine/therapeutic use
- Humans
- Immunotherapy/methods
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy/methods
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Piperidines/therapeutic use
- Polyethylene Glycols/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Quinolones/therapeutic use
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
14
|
Cayssials E, Guilhot F. Chronic Myeloid Leukemia: Immunobiology and Novel Immunotherapeutic Approaches. BioDrugs 2018; 31:143-149. [PMID: 28501913 DOI: 10.1007/s40259-017-0225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imatinib has revolutionized the treatment and prognosis of chronic myeloid leukemia (CML) with survival rates now approaching those of the age-matched healthy population. To be able to discontinue tyrosine kinase inhibitor (TKI) treatment, it is necessary to develop complementary therapies to target minimal residual disease. Recent findings by a number of investigators in both CML mouse models and CML patients offer evidence that many factors in the leukemic microenvironment can collectively contribute to immune escape, including expansion of myeloid-derived suppressor cells, programmed death-1/programmed death-1 ligand interactions resulting in T-cell impairment, expression of soluble suppressive factors such as soluble CD25, and down-regulation of MHC molecules by CML cells. Other investigators have studied the role of cytokines on the resistance to TKIs by leukemic stem cells (LSCs) and have highlighted the implication of the JAK/STAT pathway as well as the interleukin 1 (IL-1) signaling pathway. Distinct immunologic strategies have been considered to harness the immune system or trigger LSC death to allow more CML patients to discontinue TKI treatment (so-called functional cure). Successful immunotherapy and TKI combination and the optimal timing of immunotherapy determination represent major challenges for the future.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW A large number of chronic myeloid leukemia (CML) patients receiving tyrosine kinase inhibitors (TKIs) can now enjoy a deep molecular control of the disease and the life span could be approaching that of normal population. The purpose of the review is to evaluate current evidence and if we can talk of a cure. RECENT FINDINGS The revolution in the treatment of CML was apparent since the exquisite efficacy of imatinib mesylate, a tyrosine kinase inhibitor, was proven and received approval for newly diagnosed cases in 2001. Subsequent development of second-generation TKIs, nilotinib and dasatinib, has increased our armamentarium. These TKIs, because of their safety and efficacy, are now offered as first-line therapy, thus relegating use of allogeneic transplant to the second line or beyond. It has also been possible to stop TKIs in selected subsets in whom leukemia burden became undetectable and ~ 40% of them remain drug-free for a number of years-treatment-free remission (TFR). Nevertheless, much work needs to be done to eradicate leukemia stem cells as current TKIs appear unable to eradicate leukemia stem cells (LSC). Effective treatment of more advanced phase CML remains elusive. Further efforts to develop newer molecules targeting BCR-ABL and beyond must be continued. Although TKIs have revolutionized treatment of chronic phase CML, longer follow-up is necessary to realize their curative potential. Equally important is to explore newer targets and development of more potent small molecules for eradication of leukemia clone in all patients.
Collapse
|
16
|
Gomez-de-León A, Gómez-Almaguer D, Ruiz-Delgado GJ, Ruiz-Arguelles GJ. Insights into the management of chronic myeloid leukemia in resource-poor settings: a Mexican perspective. Expert Rev Hematol 2017; 10:809-819. [PMID: 28742419 DOI: 10.1080/17474086.2017.1360180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The arrival of targeted therapy for chronic myeloid leukemia (CML) was revolutionary. However, due to the high cost of tyrosine kinase inhibitors, access to this highly effective therapy with strict monitoring strategies is limited in low to middle-income countries. In this context, following standard recommendations proposed by experts in developed countries is difficult. Areas covered: This review aims to provide an insight into the management of patients with CML living in a resource-limited setting. It addresses several issues: diagnosis, initial treatment, disease monitoring, and additional treatment alternatives including allogeneic hematopoietic stem cell transplantation. Expert commentary: Imatinib is probably the most cost-effective TKI for initial treatment in developing and underdeveloped countries. Generic imatinib preparations should be evaluated before considering their widespread use. Adherence to treatment should be emphasized. Adequate monitoring can be performed through several methods successfully and is important for predicting outcomes, particularly early in the first year, and if treatment suspension is being considered. Access to further therapeutic alternatives should define our actions after failure or intolerance to imatinib, preferring additional TKIs if possible. Allogeneic transplantation in chronic phase is a viable option in this context.
Collapse
Affiliation(s)
- Andrés Gomez-de-León
- a Universidad Autónoma de Nuevo León , Facultad de Medicina y Hospital Universitario "Dr.José Eleuterio González". Hematology Service, Monterrey , Nuevo León , México
| | - David Gómez-Almaguer
- a Universidad Autónoma de Nuevo León , Facultad de Medicina y Hospital Universitario "Dr.José Eleuterio González". Hematology Service, Monterrey , Nuevo León , México
| | | | | |
Collapse
|
17
|
Sumi M, Sato K, Kaiume H, Takeda W, Kirihara T, Ueki T, Hiroshima Y, Kobayashi H. Second cord blood transplantation and interferon-α maintenance therapy for relapsed Ph + acute lymphoblastic leukemia with the T315I mutation. Leuk Lymphoma 2016; 58:2005-2007. [PMID: 27998202 DOI: 10.1080/10428194.2016.1266623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Masahiko Sumi
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| | - Keijiro Sato
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan.,b Department of Hematology , Kanazawa University Hospital , Kanazawa , Japan
| | - Hiroko Kaiume
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| | - Wataru Takeda
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| | - Takehiko Kirihara
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| | - Toshimitsu Ueki
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| | - Yuki Hiroshima
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| | - Hikaru Kobayashi
- a Department of Hematology , Nagano Red Cross Hospital , Nagano , Japan
| |
Collapse
|