2
|
Mayeuf-Louchart A, Lancel S, Sebti Y, Pourcet B, Loyens A, Delhaye S, Duhem C, Beauchamp J, Ferri L, Thorel Q, Boulinguiez A, Zecchin M, Dubois-Chevalier J, Eeckhoute J, Vaughn LT, Roach PJ, Dani C, Pederson BA, Vincent SD, Staels B, Duez H. Glycogen Dynamics Drives Lipid Droplet Biogenesis during Brown Adipocyte Differentiation. Cell Rep 2020; 29:1410-1418.e6. [PMID: 31693883 PMCID: PMC7057258 DOI: 10.1016/j.celrep.2019.09.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs. Brown adipocytes are functionally differentiated at E17.5 in the mouse embryo Lipid droplets are formed within glycogen clusters Glycogen production is crucial for lipid droplet biogenesis during BAT differentiation Glycophagy-mediated glycogen degradation drives lipid droplet formation
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France.
| | - Steve Lancel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Yasmine Sebti
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Benoit Pourcet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Anne Loyens
- Univ. Lille, UMR-S 1172-JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - Stéphane Delhaye
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Christian Duhem
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Justine Beauchamp
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Lise Ferri
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Quentin Thorel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Alexis Boulinguiez
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Mathilde Zecchin
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Logan T Vaughn
- Indiana University School of Medicine-Muncie and Ball State University, Muncie, IN 47306, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV Faculté de Médecine, Nice, France
| | - Bartholomew A Pederson
- Indiana University School of Medicine-Muncie and Ball State University, Muncie, IN 47306, USA
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Hélène Duez
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| |
Collapse
|
3
|
Comparison of liver transcriptome from high- and low-intramuscular fat Chaohu ducks provided additional candidate genes for lipid selection. 3 Biotech 2019; 9:251. [PMID: 31218175 DOI: 10.1007/s13205-019-1780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022] Open
Abstract
The meat quality of ducks is closely related to the intramuscular fat (IMF) content. This study explored the candidate regulatory genes of IMF formation and lipid deposition in Chaohu ducks. The IMF of breast muscle in 100 ducks was determined and statistically analysed by normal distribution test. Duck liver samples with high IMF (CH, n = 3) and low IMF (CL, n = 3) were selected for transcriptome analysis by RNA sequencing (RNA-Seq). The IMF was in accordance with normal distribution (T = 0.001, P = 0.999). The IMF from two tails of the normal distribution was significantly different with 2.9983% ± 0.3296% in the CH group and 1.1960% ± 0.1481% in the CL group (P < 0.0001). RNA-Seq revealed 147 differentially expressed genes, including 78 up-regulated and 69 down-regulated genes in both groups. Validation by qRT-PCR was in agreement with RNA-Seq (R 2 = 0.838). Gene ontology analysis revealed that organophosphate catabolism, oxidation-reduction process, cellular lipid catabolism, lipid transport, lipid localisation, lipid biosynthesis and cellular lipid catabolism were involved in lipid metabolism. Meanwhile, Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that steroid hormone biosynthesis, ovarian steroidogenesis, alpha-linolenic acid metabolism, glycosylphosphatidylinositol anchor biosynthesis and linoleic acid metabolism were involved in lipid deposition, wherein the genes COMT, NT5E, PDE4D, PLA2G4F, A-FABP, ADRA2A, HSD17B2, PPP1R3C, PPP1R3B and NR0B2 were involved in lipid deposition. This study provided insights into the molecular mechanism for regulating lipid metabolism and identified candidate genes for selecting markers to control IMF formation in Chaohu ducks.
Collapse
|
4
|
Skurat AV, Segvich DM, DePaoli-Roach AA, Roach PJ. Novel method for detection of glycogen in cells. Glycobiology 2017; 27:416-424. [PMID: 28077463 PMCID: PMC5444244 DOI: 10.1093/glycob/cwx005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
y Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|